117,578 research outputs found

    Critical scaling for yield is independent from distance to isostaticity

    Get PDF
    Using discrete element simulations, we demonstrate that critical behavior for yielding in soft disk and sphere packings is independent of distance to isostaticity over a wide range of dimensionless pressures. Jammed states are explored via quasistatic shear at fixed pressure, and the statistics of the dimensionless shear stress μ\mu of these states obey a scaling description with diverging length scale ξμμcν\xi \propto |\mu-\mu_c|^{-\nu}. The critical scaling functions and values of the scaling exponents are nearly independent of distance to isostaticity despite the large range of pressures studied. Our results demonstrate that yielding of jammed systems represents a distinct nonequilibrium critical transition from the isostatic critical transition which has been demonstrated by previous studies. Our results may also be useful in deriving nonlocal rheological descriptions of granular materials, foams, emulsions, and other soft particulate materials

    Central pattern generator for swimming in Melibe

    Get PDF
    The nudibranch mollusc Melibe leonina swims by bending from side to side. We have identified a network of neurons that appears to constitute the central pattern generator (CPG) for this locomotor behavior, one of only a few such networks to be described in cellular detail. The network consists of two pairs of interneurons, termed `swim interneuron 1\u27 (sint1) and `swim interneuron 2\u27 (sint2), arranged around a plane of bilateral symmetry. Interneurons on one side of the brain, which includes the paired cerebral, pleural and pedal ganglia, coordinate bending movements toward the same side and communicate via non-rectifying electrical synapses. Interneurons on opposite sides of the brain coordinate antagonistic movements and communicate over mutually inhibitory synaptic pathways. Several criteria were used to identify members of the swim CPG, the most important being the ability to shift the phase of swimming behavior in a quantitative fashion by briefly altering the firing pattern of an individual neuron. Strong depolarization of any of the interneurons produces an ipsilateral swimming movement during which the several components of the motor act occur in sequence. Strong hyperpolarization causes swimming to stop and leaves the animal contracted to the opposite side for the duration of the hyperpolarization. The four swim interneurons make appropriate synaptic connections with motoneurons, exciting synergists and inhibiting antagonists. Finally, these are the only neurons that were found to have this set of properties in spite of concerted efforts to sample widely in the Melibe CNS. This led us to conclude that these four cells constitute the CPG for swimming. While sint1 and sint2 work together during swimming, they play different roles in the generation of other behaviors. Sint1 is normally silent when the animal is crawling on a surface but it depolarizes and begins to fire in strong bursts once the foot is dislodged and the animal begins to swim. Sint2 also fires in bursts during swimming, but it is not silent in non-swimming animals. Instead activity in sint2 is correlated with turning movements as the animal crawls on a surface. This suggests that the Melibe motor system is organized in a hierarchy and that the alternating movements characteristic of swimming emerge when activity in sint1 and sint2 is bound together

    Turbulence characteristics of an axisymmetric reacting flow

    Get PDF
    Turbulent sudden expansion flows are of significant theoretical and practical importance. Such flows have been the subject of extensive analytical and experimental study for decades, but many issues are still unresolved. Detailed information on reacting sudden expansion flows is very limited, since suitable measurement techniques have only been available in recent years. The present study of reacting flow in an axisymmetric sudden expansion was initiated under NASA support in December 1983. It is an extension of a reacting flow program which has been carried out with Air Force support under Contract F33615-81-K-2003. Since the present effort has just begun, results are not yet available. Therefore a brief overview of results from the Air Force program will be presented to indicate the basis for the work to be carried out

    Reversal Modes of Simulated Iron Nanopillars in an Obliquely Oriented Field

    Full text link
    Stochastic micromagnetic simulations are employed to study switching in three-dimensional magnetic nanopillars exposed to highly misaligned fields. The switching appears to proceed through two different decay modes, characterized by very different average lifetimes and different average values of the transverse magnetization components.Comment: 3 pages, 4 figure
    corecore