3,707 research outputs found
Theoretical Response to the Discovery of Deeply Bound Pionic States in 208Pb(d,3He) reactions
Recently, deeply bound pionic states were found experimentally in (d, He)
reactions on Pb. They found an isolated peak structure in the bound
region below the pion production threshold. We study theoretically these
excitation functions in (d, He) reactions on Pb at T=600 MeV.
We found very good agreement with the (d, He) excitation functions and
could identify the underlying structures of the pionic states. We study the
energy dependence of the (d, He) reactions and the change of the excitation
functions with the incident energy.Comment: 5 pages, Latex, Figures available on request, Z.Phys.A.accepte
Relativistic Equation of State for Core-Collapse Supernova Simulations
We construct the equation of state (EOS) of dense matter covering a wide
range of temperature, proton fraction, and density for the use of core-collapse
supernova simulations. The study is based on the relativistic mean-field (RMF)
theory, which can provide an excellent description of nuclear matter and finite
nuclei. The Thomas--Fermi approximation in combination with assumed nucleon
distribution functions and a free energy minimization is adopted to describe
the non-uniform matter, which is composed of a lattice of heavy nuclei. We
treat the uniform matter and non-uniform matter consistently using the same RMF
theory. We present two sets of EOS tables, namely EOS2 and EOS3. EOS2 is an
update of our earlier work published in 1998 (EOS1), where only the nucleon
degree of freedom is taken into account. EOS3 includes additional contributions
from hyperons. The effect of hyperons on the EOS is
negligible in the low-temperature and low-density region, whereas it tends to
soften the EOS at high density. In comparison with EOS1, EOS2 and EOS3 have an
improved design of ranges and grids, which covers the temperature range
-- MeV with the logarithmic grid spacing (92 points including T=0), the proton fraction
range --0.65 with the linear grid spacing (66
points), and the density range --
with the logarithmic grid spacing (110 points).Comment: 43 pages, 10 figure
Relativistic Equation of State of Nuclear Matter for Supernova Explosion
We construct the equation of state (EOS) of nuclear matter at finite
temperature and density with various proton fractions within the relativistic
mean field (RMF) theory for the use in the supernova simulations. The
Thomas-Fermi approximation is adopted to describe the non-uniform matter where
we consider nucleus, alpha-particle, proton and neutron in equilibrium. We
treat the uniform matter and non-uniform matter consistently using the RMF
theory. We tabulate the outcome as the pressure, free energy, entropy etc, with
enough mesh points in wide ranges of the temperature, proton fraction, and
baryon mass density.Comment: 22 pages, LaTeX, 9 ps-figures, Submitted to Prog.Theor.Phy
- …
