375 research outputs found

    MODELLING SCAPULAR BIOMECHANICS TO ENHANCE INTERPRETATION OF KINEMATICS AND PERFORMANCE DATA IN ROWING

    Get PDF
    Rowing involves repetitive, high intensity loading on the glenohumeral joint. Shoulder pain is associated with muscle weakness and imbalance, resulting in long-lasting overuse injuries. The goal of this study was to explore three-dimensional shoulder biomechanics during rowing to identify parameters that influence technique. Eleven athletes had their movement recorded by motion capture while using an instrumented ergometer. Kinetics and kinematics drove a computational model which output joint and muscle forces across the shoulder. Results suggest that subtle muscular changes identified by the model can be sensitively mapped to performance variables. When evaluated alongside ergometer-derived power metrics, biomechanics parameters can provide athletes and coaches a fuller picture of performance potential, injury risk, and training program efficacy

    FATIGUE LEADS TO ALTERED SPINAL KINEMATICS DURING HIGH PERFORMANCE ERGOMETER ROWING

    Get PDF
    Low back injuries in rowing are attributed to intense, repetitive, loading through the spine. Good technique and postural control are essential to maximize performance and minimize injury risk. This motion capture study recorded 3D spinal kinematics of 14 athletes during rowing at varying speeds on an instrumented ergometer and correlated motion with power metrics and athlete demographics. Sagittal plane rotation decreases in the lumbar spine and increases in the thoracic spine as speed increases. Transverse and frontal planes have little influence on force output. Declining postural control can be seen within each trial and worsened with higher rate. Assessments of form differences across athletes using relative motion between spine segments at critical stroke points show greater lumbar flexion (compared to thoracic) at the catch and neutral alignment at max handle force

    The LAGUNA design study- towards giant liquid based underground detectors for neutrino physics and astrophysics and proton decay searches

    Get PDF
    The feasibility of a next generation neutrino observatory in Europe is being considered within the LAGUNA design study. To accommodate giant neutrino detectors and shield them from cosmic rays, a new very large underground infrastructure is required. Seven potential candidate sites in different parts of Europe and at several distances from CERN are being studied: Boulby (UK), Canfranc (Spain), Fr\'ejus (France/Italy), Pyh\"asalmi (Finland), Polkowice-Sieroszowice (Poland), Slanic (Romania) and Umbria (Italy). The design study aims at the comprehensive and coordinated technical assessment of each site, at a coherent cost estimation, and at a prioritization of the sites within the summer 2010.Comment: 5 pages, contribution to the Workshop "European Strategy for Future Neutrino Physics", CERN, Oct. 200

    Genome-Wide SNP-genotyping array to study the evolution of the human pathogen Vibrio vulnificus Biotype 3

    Get PDF
    Vibrio vulnificus is an aquatic bacterium and an important human pathogen. Strains Of V. vulnificus are classified into three different biotypes. The newly emerged biotype 3 has been found to be clonal and restricted to Israel. In the family Vibrionaceae , horizontal gene transfer is the main mechanism responsible for the emergence of new pathogen groups. To better understand the evolution of the bacterium, and in particular to trace the evolution of biotype 3, we performed genome-wide SNP genotyping of 254 clinical and environmental V. vulnificus isolates with worldwide distribution recovered over a 30-year period, representing all phylogeny groups. A custom single-nucleotide polymorphism (SNP) array implemented on the Illumina GoldenGate platform was developed based on 570 SNPs randomly distributed throughout the genome. In general, the genotyping results divided the V. vulnificus species into three main phylogenetic lineages and an additional subgroup, clade B, consisting of environmental and clinical isolates from Israel. Data analysis suggested that 69% of biotype 3 SNPs are similar to SNPs from clade B, indicating that biotype 3 and clade B have a common ancestor. The rest of the biotype 3 SNPs were scattered along the biotype 3 genome, probably representing multiple chromosomal segments that may have been horizontally inserted into the clade B recipient core genome from other phylogroups or bacterial species sharing the same ecological niche. Results emphasize the continuous evolution of V. vulnificus and support the emergence of new pathogenic groups within this species as a recurrent phenomenon. Our findings contribute to a broader understanding of the evolution of this human pathogen

    Polymer photonic sensing skin

    Get PDF
    A highly flexible sensing skin with embedded polymer optical fibre Bragg gratings is characterised The response to pressure and strain compare favourably to a similar skin instrumented with silica fibre Bragg grating sensors

    The LAGUNA design study- towards giant liquid based underground detectors for neutrino physics and astrophysics and proton decay searches

    Get PDF
    The feasibility of a next generation neutrino observatory in Europe is being considered within the LAGUNA design study. To accommodate giant neutrino detectors and shield them from cosmic rays, a new very large underground infrastructure is required. Seven potential candidate sites in different parts of Europe and at several distances from CERN are being studied: Boulby (UK), Canfranc (Spain), Fr\'ejus (France/Italy), Pyh\"asalmi (Finland), Polkowice-Sieroszowice (Poland), Slanic (Romania) and Umbria (Italy). The design study aims at the comprehensive and coordinated technical assessment of each site, at a coherent cost estimation, and at a prioritization of the sites within the summer 2010

    Metabolic impairment of non-small cell lung cancers by mitochondrial HSPD1 targeting

    Get PDF
    Background!#!The identification of novel targets is of paramount importance to develop more effective drugs and improve the treatment of non-small cell lung cancer (NSCLC), the leading cause of cancer-related deaths worldwide. Since cells alter their metabolic rewiring during tumorigenesis and along cancer progression, targeting key metabolic players and metabolism-associated proteins represents a valuable approach with a high therapeutic potential. Metabolic fitness relies on the functionality of heat shock proteins (HSPs), molecular chaperones that facilitate the correct folding of metabolism enzymes and their assembly in macromolecular structures.!##!Methods!#!Gene fitness was determined by bioinformatics analysis from available datasets from genetic screenings. HSPD1 expression was evaluated by immunohistochemistry from formalin-fixed paraffin-embedded tissues from NSCLC patients. Real-time proliferation assays with and without cytotoxicity reagents, colony formation assays and cell cycle analyses were used to monitor growth and drug sensitivity of different NSCLC cells in vitro. In vivo growth was monitored with subcutaneous injections in immune-deficient mice. Cell metabolic activity was analyzed through extracellular metabolic flux analysis. Specific knockouts were introduced by CRISPR/Cas9.!##!Results!#!We show heat shock protein family D member 1 (HSPD1 or HSP60) as a survival gene ubiquitously expressed in NSCLC and associated with poor patients' prognosis. HSPD1 knockdown or its chemical disruption by the small molecule KHS101 induces a drastic breakdown of oxidative phosphorylation, and suppresses cell proliferation both in vitro and in vivo. By combining drug profiling with transcriptomics and through a whole-genome CRISPR/Cas9 screen, we demonstrate that HSPD1-targeted anti-cancer effects are dependent on oxidative phosphorylation and validated molecular determinants of KHS101 sensitivity, in particular, the creatine-transporter SLC6A8 and the subunit of the cytochrome c oxidase complex COX5B.!##!Conclusions!#!These results highlight mitochondrial metabolism as an attractive target and HSPD1 as a potential theranostic marker for developing therapies to combat NSCLC

    The clinicopathologic observation, c-KIT gene mutation and clonal status of gastrointestinal stromal tumor in the sacrum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is very rare that gastrointestinal stromal tumor (GIST) occurs in the sacrum. Only one case of GIST occuring in the sacral region, with intracranial metastasis, has been reported in the literature. Moreover, only few cases have been published in literature about its clonal origin.</p> <p>Case presentation</p> <p>In this report, we present a rare case of GIST occuring in the sacrum and describe its clinicopathologic features, c-KIT gene mutation and clonal status. Microscopically, the lesion was composed of spindle cells arranged in cords, knitted and whirlpool patterns. Trabecula of bone were found in the lesion. The cytoplasm of tumor cells were abundant, and the nuclei were fusiform. Mitotic figures were rare. Immunohistochemically, the tumor cells showed positive reactivity for CD117 and CD34. On mutation analysis, a c-KIT gene mutation was found in exon 11. The result of clonal analysis demonstrated that the GIST was monoclonal.</p> <p>Conclusion</p> <p>In summary, we showed that tumor material, phenotypically identical with GISTs was found in the sacrum. It is difficult to differentiate GISTs from other spindle cell tumors, hence the need for immunohistochemistry, the examination of c-KIT gene amplification and sequencing.</p
    corecore