540 research outputs found
Symptomatic oxygen for non-hypoxaemic chronic obstructive pulmonary disease.
Dyspnoea is a common symptom in chronic obstructive pulmonary disease (COPD). People who are hypoxaemic may be given long-term oxygen relief therapy (LTOT) to improve their life expectancy and quality of life. However, the symptomatic benefit of home oxygen therapy in mildly or non-hypoxaemic people with COPD with dyspnoea who do not meet international funding criteria for LTOT (PaO(2)< 55 mmHg or other special cases) is unknown. To determine the efficacy of oxygen versus medical air for relief of subjective dyspnoea in mildly or non-hypoxaemic people with COPD who would not otherwise qualify for home oxygen therapy. The main outcome was patient-reported dyspnoea and secondary outcome was exercise tolerance. We searched the Cochrane Airways Group Register, Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE and EMBASE, to November 2009, to identify randomised controlled trials. We handsearched reference lists of included articles. We only included randomised controlled trials of oxygen versus medical air in mildly or non-hypoxaemic people with COPD. Two review authors independently assessed articles for inclusion. One review author completed data extraction and methodological quality assessment. A second review author then over-read evidence tables to assess for accuracy. Twenty-eight trials on 702 patients met the criteria for inclusion; 18 trials (431 participants) were included in the meta-analysis. Oxygen reduced dyspnoea with a standardised mean difference (SMD) of -0.37 (95% confidence interval (CI) -0.50 to -0.24, P < 0.00001). We observed significant heterogeneity. Oxygen can relieve dyspnoea in mildly and non-hypoxaemic people with COPD who would not otherwise qualify for home oxygen therapy. Given the significant heterogeneity among the included studies, clinicians should continue to evaluate patients on an individual basis until supporting data from ongoing, large randomised controlled trials are available
How do respiratory patients perceive oxygen therapy? A critical interpretative synthesis of the literature.
Modulation of the Intestinal Microbiota Alters Colitis-Associated Colorectal Cancer Susceptibility
It is well established that the intestinal microbiota plays a key role in the pathogenesis of Crohn's disease (CD) and ulcerative colitis (UC) collectively referred to as inflammatory bowel disease (IBD). Epidemiological studies have provided strong evidence that IBD patients bear increased risk for the development of colorectal cancer (CRC). However, the impact of the microbiota on the development of colitis-associated cancer (CAC) remains largely unknown. In this study, we established a new model of CAC using azoxymethane (AOM)-exposed, conventionalized-Il10−/− mice and have explored the contribution of the host intestinal microbiota and MyD88 signaling to the development of CAC. We show that 8/13 (62%) of AOM-Il10−/− mice developed colon tumors compared to only 3/15 (20%) of AOM- wild-type (WT) mice. Conventionalized AOM-Il10−/− mice developed spontaneous colitis and colorectal carcinomas while AOM-WT mice were colitis-free and developed only rare adenomas. Importantly, tumor multiplicity directly correlated with the presence of colitis. Il10−/− mice mono-associated with the mildly colitogenic bacterium Bacteroides vulgatus displayed significantly reduced colitis and colorectal tumor multiplicity compared to Il10−/− mice. Germ-free AOM-treated Il10−/− mice showed normal colon histology and were devoid of tumors. Il10−/−; Myd88−/− mice treated with AOM displayed reduced expression of Il12p40 and Tnfα mRNA and showed no signs of tumor development. We present the first direct demonstration that manipulation of the intestinal microbiota alters the development of CAC. The TLR/MyD88 pathway is essential for microbiota-induced development of CAC. Unlike findings obtained using the AOM/DSS model, we demonstrate that the severity of chronic colitis directly correlates to colorectal tumor development and that bacterial-induced inflammation drives progression from adenoma to invasive carcinoma
The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer
Colitis-associated cancer (CAC) is a major complication of inflammatory bowel diseases. We show that components of the inflammasome are protective during acute and recurring colitis and CAC in the dextran sulfate sodium (DSS) and azoxymethane + DSS models. Mice lacking the inflammasome adaptor protein PYCARD (ASC) and caspase-1 demonstrate increased disease outcome, morbidity, histopathology, and polyp formation. The increased tumor burden is correlated with attenuated levels of IL-1β and IL-18 at the tumor site. To decipher the nucleotide-binding domain, leucine-rich-repeat-containing (NLR) component that is involved in colitis and CAC, we assessed Nlrp3 and Nlrc4 deficient mice. Nlrp3−/− mice showed an increase in acute and recurring colitis and CAC, although the disease outcome was less severe in Nlrp3−/− mice than in Pycard−/− or Casp1−/− animals. No significant differences were observed in disease progression or outcome in Nlrc4−/− mice compared with similarly treated wild-type animals. Bone marrow reconstitution experiments show that Nlrp3 gene expression and function in hematopoietic cells, rather than intestinal epithelial cells or stromal cells, is responsible for protection against increased tumorigenesis. These data suggest that the inflammasome functions as an attenuator of colitis and CAC
Modulation of the Intestinal Microbiota Alters Colitis-Associated Colorectal Cancer Susceptibility
It is well established that the intestinal microbiota plays a key role in the pathogenesis of Crohn's disease (CD) and ulcerative colitis (UC) collectively referred to as inflammatory bowel disease (IBD). Epidemiological studies have provided strong evidence that IBD patients bear increased risk for the development of colorectal cancer (CRC). However, the impact of the microbiota on the development of colitis-associated cancer (CAC) remains largely unknown. In this study, we established a new model of CAC using azoxymethane (AOM)-exposed, conventionalized-Il10−/− mice and have explored the contribution of the host intestinal microbiota and MyD88 signaling to the development of CAC. We show that 8/13 (62%) of AOM-Il10−/− mice developed colon tumors compared to only 3/15 (20%) of AOM- wild-type (WT) mice. Conventionalized AOM-Il10−/− mice developed spontaneous colitis and colorectal carcinomas while AOM-WT mice were colitis-free and developed only rare adenomas. Importantly, tumor multiplicity directly correlated with the presence of colitis. Il10−/− mice mono-associated with the mildly colitogenic bacterium Bacteroides vulgatus displayed significantly reduced colitis and colorectal tumor multiplicity compared to Il10−/− mice. Germ-free AOM-treated Il10−/− mice showed normal colon histology and were devoid of tumors. Il10−/−; Myd88−/− mice treated with AOM displayed reduced expression of Il12p40 and Tnfα mRNA and showed no signs of tumor development. We present the first direct demonstration that manipulation of the intestinal microbiota alters the development of CAC. The TLR/MyD88 pathway is essential for microbiota-induced development of CAC. Unlike findings obtained using the AOM/DSS model, we demonstrate that the severity of chronic colitis directly correlates to colorectal tumor development and that bacterial-induced inflammation drives progression from adenoma to invasive carcinoma
Histological and Molecular Evaluation of Patient-Derived Colorectal Cancer Explants
Mouse models have been developed to investigate colorectal cancer etiology and evaluate new anti-cancer therapies. While genetically engineered and carcinogen-induced mouse models have provided important information with regard to the mechanisms underlying the oncogenic process, tumor xenograft models remain the standard for the evaluation of new chemotherapy and targeted drug treatments for clinical use. However, it remains unclear to what extent explanted colorectal tumor tissues retain inherent pathological features over time. In this study, we have generated a panel of 27 patient-derived colorectal cancer explants (PDCCEs) by direct transplantation of human colorectal cancer tissues into NOD-SCID mice. Using this panel, we performed a comparison of histology, gene expression and mutation status between PDCCEs and the original human tissues from which they were derived. Our findings demonstrate that PDCCEs maintain key histological features, basic gene expression patterns and KRAS/BRAF mutation status through multiple passages. Altogether, these findings suggest that PDCCEs maintain similarity to the patient tumor from which they are derived and may have the potential to serve as a reliable preclinical model that can be incorporated into future strategies to optimize individual therapy for patients with colorectal cancer
Correction to: Fibroblast growth factor receptor 3 alterations and response to immune checkpoint inhibition in metastatic urothelial cancer: a real world experience
Correction to "Fibroblast growth factor receptor 3 alterations and response to immune checkpoint inhibition in metastatic urothelial cancer: a real world experience
Fibroblast growth factor receptor 3 alterations and response to immune checkpoint inhibition in metastatic urothelial cancer: a real world experience
Background FGFR3-altered urothelial cancer (UC) correlates with a non-T cell-inflamed phenotype and has therefore been postulated to be less responsive to immune checkpoint blockade (ICB). Preclinical work suggests FGFR3 signalling may suppress pathways such as interferon signalling that alter immune microenvironment composition. However, correlative studies examining clinical trials have been conflicting as to whether FGFR altered tumours have equivalent response and survival to ICB in patients with metastatic UC. These findings have yet to be validated in real world data, therefore we evaluated clinical outcomes of patients with FGFR3-altered metastatic UC treated with ICB and investigate the underlying immunogenomic mechanisms of response and resistance. Methods 103 patients with metastatic UC treated with ICB at a single academic medical center from 2014 to 2018 were identified. Clinical annotation for demographics and cancer outcomes, as well as somatic DNA and RNA sequencing, were performed. Objective response rate to ICB, progression-free survival, and overall survival was compared between patients with FGFR3-alterations and those without. RNA expression, including molecular subtyping and T cell receptor clonality, was also compared between FGFR3-altered and non-altered patients. Results Our findings from this dataset confirm that FGFR3-altered (n = 17) and wild type (n = 86) bladder cancers are equally responsive to ICB (12 vs 19%, p = 0.73). Moreover, we demonstrate that despite being less inflamed, FGFR3-altered tumours have equivalent T cell receptor (TCR) diversity and that the balance of a CD8 T cell gene expression signature to immune suppressive features is an important determinant of ICB response. Conclusions Our work in a real world dataset validates prior observations from clinical trials but also extends this prior work to demonstrate that FGFR3-altered and wild type tumours have equivalent TCR diversity and that the balance of effector T cell to immune suppression signals are an important determinant of ICB response
The Clinical and Social Dimensions of Prescribing Palliative Home Oxygen for Refractory Dyspnea
Predictors of chronic breathlessness: a large population study
<p>Abstract</p> <p>Background</p> <p>Breathlessness causes significant burden in our community but the underlying socio-demographic and lifestyle factors that may influence it are not well quantified. This study aims to define these predictors of chronic breathlessness at a population level.</p> <p>Methods</p> <p>Data were collected from adult South Australians in 2007 and 2008 (n = 5331) as part of a face-to-face, cross-sectional, whole-of-population, multi-stage, systematic area sampling population health survey. The main outcome variable was breathlessness in logistic regression models. Lifestyle factors examined included smoking history, smoke-free housing, level of physical activity and body mass index (obesity).</p> <p>Results</p> <p>The participation rate was 64.1%, and 11.1% of individuals (15.0% if aged ≥50 years) chronically had breathlessness that limited exertion. Significant bivariate associations with chronic breathlessness for the whole population and only those ≥50 included: increasing age; female gender; being separated/divorced/widowed; social disadvantage; smoking status; those without a smoke-free home; low levels of physical activity; and obesity. In multi-variate analyses adjusted for age, marital status (p < 0.001), physical activity (p < 0.001), obesity (p < 0.001), gender (p < 0.05) and social disadvantage (p < 0.05) remained significant factors. Smoking history was <it>not </it>a significant contributor to the model.</p> <p>Conclusions</p> <p>There is potential benefit in addressing reversible lifestyle causes of breathlessness including high body mass index (obesity) and low levels of physical activity in order to decrease the prevalence of chronic breathlessness. Clinical intervention studies for chronic breathlessness should consider stratification by body mass index.</p
- …
