282 research outputs found
Nose profile morphology and accuracy study of nose profile estimation method in Scottish subadult and Indonesian adult populations
This study investigated nose profile morphology and its relationship to the skull in Scottish subadult and Indonesian adult populations, with the aim of improving the accuracy of forensic craniofacial reconstruction. Samples of 86 lateral head cephalograms from Dundee Dental School (mean age, 11.8 years) and 335 lateral head cephalograms from the Universitas Padjadjaran Dental Hospital, Bandung, Indonesia (mean age 24.2 years), were measured. The method of nose profile estimation based on skull morphology previously proposed by Rynn and colleagues in 2010 (FSMP 6:20–34) was tested in this study. Following this method, three nasal aperture-related craniometrics and six nose profile dimensions were measured from the cephalograms. To assess the accuracy of the method, six nose profile dimensions were estimated from the three craniometric parameters using the published method and then compared to the actual nose profile dimensions. In the Scottish subadult population, no sexual dimorphism was evident in the measured dimensions. In contrast, sexual dimorphism of the Indonesian adult population was evident in all craniometric and nose profile dimensions; notably, males exhibited statistically significant larger values than females. The published method by Rynn and colleagues (FSMP 6:20–34, 2010) performed better in the Scottish subadult population (mean difference of maximum, 2.35 mm) compared to the Indonesian adult population (mean difference of maximum, 5.42 mm in males and 4.89 mm in females). In addition, regression formulae were derived to estimate nose profile dimensions based on the craniometric measurements for the Indonesian adult population. The published method is not sufficiently accurate for use on the Indonesian population, so the derived method should be used. The accuracy of the published method by Rynn and colleagues (FSMP 6:20–34, 2010) was sufficiently reliable to be applied in Scottish subadult population
Clustering in stable and unstable nuclei in -shell and -shell regions
According to microscopic calculations with antisymmetrized molecular
dynamics, we studied cluster features in stable and unstable nuclei. A variety
of structure was found in stable and unstable nuclei in the -shell and
-shell regions. The structure of excited states of Be was
investigated, while in -shell nuclei we focused on molecular states and
deformed states. The deformed states in Si and Ca were discussed
in connection with the high-lying molecular states. Appealing molecular states
in Ar and Mg were suggested. The results signified that both
clustering of nucleons and mean-field formation are essential features in
-shell nuclei as well as -shell nuclei.Comment: 5 pages, 2 figs, proceedings of the 8th International conference on
Clustering Aspects of Nuclear Structure and Dynamics, Nov. 2003, Nara, Japan,
to be published in Nucl.Phys.
Weak Interaction Studies with 6He
The 6He nucleus is an ideal candidate to study the weak interaction. To this
end we have built a high-intensity source of 6He delivering ~10^10 atoms/s to
experiments. Taking full advantage of that available intensity we have
performed a high-precision measurement of the 6He half-life that directly
probes the axial part of the nuclear Hamiltonian. Currently, we are preparing a
measurement of the beta-neutrino angular correlation in 6He beta decay that
will allow to search for new physics beyond the Standard Model in the form of
tensor currents.Comment: 5 pages, 4 figures, proceedings for the Eleventh Conference on the
Intersections of Particle and Nuclear Physics (CIPANP 2012
Structure of 55Sc and development of the N=34 subshell closure
The low-lying structure of Sc has been investigated using in-beam
-ray spectroscopy with the Be(Ti,Sc+)
one-proton removal and Be(Sc,Sc+)
inelastic-scattering reactions at the RIKEN Radioactive Isotope Beam Factory.
Transitions with energies of 572(4), 695(5), 1539(10), 1730(20), 1854(27),
2091(19), 2452(26), and 3241(39) keV are reported, and a level scheme has been
constructed using coincidence relationships and -ray
relative intensities. The results are compared to large-scale shell-model
calculations in the - model space, which account for positive-parity
states from proton-hole cross-shell excitations, and to it ab initio
shell-model calculations from the in-medium similarity renormalization group
that includes three-nucleon forces explicitly. The results of proton-removal
reaction theory with the eikonal model approach were adopted to aid
identification of positive-parity states in the level scheme; experimental
counterparts of theoretical and states are
suggested from measured decay patterns. The energy of the first
state, which is sensitive to the neutron shell gap at the Fermi surface, was
determined. The result indicates a rapid weakening of the subshell
closure in -shell nuclei at , even when only a single proton occupies
the orbital
Magic numbers in exotic nuclei and spin-isospin properties of {\it NN} interaction
The magic numbers in exotic nuclei are discussed, and their novel origin is
shown to be the spin-isospin dependent part of the nucleon-nucleon interaction
in nuclei. The importance and robustness of this mechanism is shown in terms of
meson exchange, G-matrix and QCD theories. In neutron-rich exotic nuclei, magic
numbers such as N = 8, 20, etc. can disappear, while N = 6, 16, etc. arise,
affecting the structure of lightest exotic nuclei to nucleosynthesis of heavy
elements.Comment: 4 pages, 3 figures, revte
Asymmetry dependence of reduction factors from single-nucleon knockout of <font size=-1><sup>30</sup></font>Ne at ∼ 230 MeV/nucleon
published_or_final_versio
Effective interaction for pf-shell nuclei
An effective interaction is derived for use in the full pf basis. Starting
from a realistic G-matrix interaction, 195 two-body matrix elements and 4
single-particle energies are determined by fitting to 699 energy data in the
mass range 47 to 66. The derived interaction successfully describes various
structures of pf-shell nuclei. As examples, systematics of the energies of the
first 2+ states in the Ca, Ti, Cr, Fe, and Ni isotope chains and energy levels
of 56,57,58Ni are presented. The appearance of a new magic number 34 is seen.Comment: 5 pages, 4 figures, to be published in Phys. Rev.
Low-Z shore of the “island of inversion” and the reduced neutron magicity toward <font size=-1><sup>28</sup></font>O
published_or_final_versio
Intruder configurations in the ground state of <font size=-1><sup>30</sup></font>Ne
published_or_final_versio
- …
