1,664 research outputs found

    Phantom Accretion onto the Schwarzschild de-Sitter Black Hole

    Full text link
    We deal with phantom energy accretion onto the Schwarzschild de-Sitter black hole. The energy flux conservation, relativistic Bernoulli equation and mass flux conservation equation are formulated to discuss the phantom accretion. We discuss the conditions for critical accretion. It is found that mass of the black hole decreases due to phantom accretion. There exist two critical points which lie in the exterior of horizons (black hole and cosmological horizons). The results for the phantom energy accretion onto the Schwarzschild black hole can be recovered by taking Λ0\Lambda\rightarrow0.Comment: 9 pages, no figur

    Dark Energy and the quietness of the Local Hubble Flow

    Get PDF
    The linearity and quietness of the Local (<10Mpc< 10 Mpc) Hubble Flow (LHF) in view of the very clumpy local universe is a long standing puzzle in standard and in open CDM cosmogony. The question addressed in this paper is whether the antigravity component of the recently discovered dark energy can cool the velocity flow enough to provide a solution to this puzzle. We calculate the growth of matter fluctuations in a flat universe containing a fraction ΩX(t0)\Omega_X(t_0) of dark energy obeying the time independent equation of state pX=wρXp_X = w \rho_X. We find that dark energy can indeed cool the LHF. However the dark energy parameter values required to make the predicted velocity dispersion consistent with the observed value vrms40km/secv_{rms}\simeq 40km/sec have been ruled out by other observational tests constraining the dark energy parameters ww and ΩX\Omega_X. Therefore despite the claims of recent qualitative studies dark energy with time independent equation of state can not by itself explain the quietness and linearity of the Local Hubble Flow.Comment: 4 pages, 3 figures, accepted in Phys. Rev. D. Minor corrections, one figure adde

    Phantom scalar emission in the Kerr black hole spacetime

    Full text link
    We study the absorption probability and Hawking radiation spectra of a phantom scalar field in the Kerr black hole spacetime. We find that the presence of the negative kinetic energy terms modifies the standard results in the greybody factor, super-radiance and Hawking radiation. Comparing with the usual scalar particle, the phantom scalar emission is enhanced in the black hole spacetime.Comment: 11 pages, 6 figures, a revised version accepted for publication in CQ

    Hubble Space Telescope Weak-lensing Study of the Galaxy Cluster XMMU J2235.3-2557 at z=1.4: A Surprisingly Massive Galaxy Cluster when the Universe is One-third of its Current Age

    Full text link
    We present a weak-lensing analysis of the z=1.4 galaxy cluster XMMU J2235.3-2557, based on deep Advanced Camera for Surveys images. Despite the observational challenge set by the high redshift of the lens, we detect a substantial lensing signal at the >~ 8 sigma level. This clear detection is enabled in part by the high mass of the cluster, which is verified by our both parametric and non-parametric estimation of the cluster mass. Assuming that the cluster follows a Navarro-Frenk-White mass profile, we estimate that the projected mass of the cluster within r=1 Mpc is (8.5+-1.7) x 10^14 solar mass, where the error bar includes the statistical uncertainty of the shear profile, the effect of possible interloping background structures, the scatter in concentration parameter, and the error in our estimation of the mean redshift of the background galaxies. The high X-ray temperature 8.6_{-1.2}^{+1.3} keV of the cluster recently measured with Chandra is consistent with this high lensing mass. When we adopt the 1-sigma lower limit as a mass threshold and use the cosmological parameters favored by the Wilkinson Microwave Anisotropy Probe 5-year (WMAP5) result, the expected number of similarly massive clusters at z >~ 1.4 in the 11 square degree survey is N ~ 0.005. Therefore, the discovery of the cluster within the survey volume is a rare event with a probability < 1%, and may open new scenarios in our current understanding of cluster formation within the standard cosmological model.Comment: Accepted to ApJ for publication. 40 pages and 14 figure

    Cosmological spacetimes balanced by a scale covariant scalar field

    Full text link
    A scale invariant, Weyl geometric, Lagrangian approach to cosmology is explored, with a a scalar field phi of (scale) weight -1 as a crucial ingredient besides classical matter \cite{Tann:Diss,Drechsler:Higgs}. For a particularly simple class of Weyl geometric models (called {\em Einstein-Weyl universes}) the Klein-Gordon equation for phi is explicitly solvable. In this case the energy-stress tensor of the scalar field consists of a vacuum-like term Lambda g_{mu nu} with variable coefficient Lambda, depending on matter density and spacetime geometry, and of a dark matter like term. Under certain assumptions on parameter constellations, the energy-stress tensor of the phi-field keeps Einstein-Weyl universes in locally stable equilibrium. A short glance at observational data, in particular supernovae Ia (Riess ea 2007), shows interesting empirical properties of these models.Comment: 28 pages, 1 figure, accepted by Foundations of Physic

    Field theory models for variable cosmological constant

    Get PDF
    Anthropic solutions to the cosmological constant problem require seemingly unnatural scalar field potentials with a very small slope or domain walls (branes) with a very small coupling to a four-form field. Here we introduce a class of models in which the smallness of the corresponding parameters can be attributed to a spontaneously broken discrete symmetry. We also demonstrate the equivalence of scalar field and four-form models. Finally, we show how our models can be naturally embedded into a left-right extension of the standard model.Comment: A reference adde

    Field propagation in de Sitter black holes

    Get PDF
    We present an exhaustive analysis of scalar, electromagnetic and gravitational perturbations in the background of Schwarzchild-de Sitter and Reissner-Nordstrom-de Sitter spacetimes. The field propagation is considered by means of a semi-analytical (WKB) approach and two numerical schemes: the characteristic and general initial value integrations. The results are compared near the extreme cosmological constant regime, where analytical results are presented. A unifying picture is established for the dynamics of different spin fields.Comment: 15 pages, 16 figures, published versio

    Volume Expansion of Swiss-Cheese Universe

    Full text link
    In order to investigate the effect of inhomogeneities on the volume expansion of the universe, we study modified Swiss-Cheese universe model. Since this model is an exact solution of Einstein equations, we can get an insight into non-linear dynamics of inhomogeneous universe from it. We find that inhomogeneities make the volume expansion slower than that of the background Einstein-de Sitter universe when those can be regarded as small fluctuations in the background universe. This result is consistent with the previous studies based on the second order perturbation analysis. On the other hand, if the inhomogeneities can not be treated as small perturbations, the volume expansion of the universe depends on the type of fluctuations. Although the volume expansion rate approaches to the background value asymptotically, the volume itself can be finally arbitrarily smaller than the background one and can be larger than that of the background but there is an upper bound on it.Comment: 22 pages, 7 figures, to be submitted to Phys. Rev.

    Density pertubation of unparticle dark matter in the flat Universe

    Full text link
    The unparticle has been suggested as a candidate of dark matter. We investigated the growth rate of the density perturbation for the unparticle dark matter in the flat Universe. First, we consider the model in which unparticle is the sole dark matter and find that the growth factor can be approximated well by f=(1+3ωu)Ωuγf=(1+3\omega_u)\Omega^{\gamma}_u, where ωu\omega_u is the equation of state of unparticle. Our results show that the presence of ωu\omega_u modifies the behavior of the growth factor ff. For the second model where unparticle co-exists with cold dark matter, the growth factor has a new approximation f=(1+3ωu)Ωuγ+αΩmf=(1+3\omega_u)\Omega^{\gamma}_u+\alpha \Omega_m and α\alpha is a function of ωu\omega_u. Thus the growth factor of unparticle is quite different from that of usual dark matter. These information can help us know more about unparticle and the early evolution of the Universe.Comment: 6pages, 4 figures, accepted for publication in Eur. Phys. J.

    Transition between phantom and non-phantom phases with time dependent cosmological constant and Cardy-Verlinde formula

    Full text link
    We investigate the transition phenomenon of the universe between a phantom and a non-phantom phases. Particular attention is devoted to the case in which the cosmological constant depends on time and is proportional to the square of the Hubble parameter. Inhomogeneous equations of state are used and the equation of motion is solved. We find that, depending on the choice of the input parameters, the universe can transit from the non-phantom to the phantom phase leading to the appearance of singularities. In particular, we find that the phantom universe ends in the singularity of type III, unlike the case without variable cosmological constant in which the phantom phase ends exclusively in the big rip (singularity of type I). The Cardy-Verlinde formula is also introduced for inhomogeneous equation of state and we find that its equivalence with the total entropy of the universe, coming from the Friedmann equations, occurs only for special choice of the input parameter mm at the present time.Comment: 12 pages, 2 figure
    corecore