222 research outputs found
Disentangling neural processing of masked and masking stimulus by means of event-related contralateral – ipsilateral differences of EEG potentials
In spite of the excellent temporal resolution of event-related EEG potentials
(ERPs), the overlapping potentials evoked by masked and masking stimuli are hard
to disentangle. However, when both masked and masking stimuli consist of pairs
of relevant and irrelevant stimuli, one left and one right from fixation, with
the side of the relevant element varying between pairs, effects of masked and
masking stimuli can be distinguished by means of the contralateral preponderance
of the potentials evoked by the relevant elements, because the relevant elements
may independently change sides in masked and masking stimuli. Based on a
reanalysis of data from which only selected contralateral-ipsilateral effects
had been previously published, the present contribution will provide a more
complete picture of the ERP effects in a masked-priming task. Indeed, effects
evoked by masked primes and masking targets heavily overlapped in conventional
ERPs and could be disentangled to a certain degree by contralateral-ipsilateral
differences. Their major component, the N2pc, is interpreted as indicating
preferential processing of stimuli matching the target template, which process
can neither be identified with conscious perception nor with shifts of spatial
attention. The measurements showed that the triggering of response preparation
by the masked stimuli did not depend on their discriminability, and their
priming effects on the processing of the following target stimuli were
qualitatively different for stimulus identification and for response
preparation. These results provide another piece of evidence for the
independence of motor-related and perception-related effects of masked
stimuli
Visual masking and the dynamics of human perception, cognition, and consciousness A century of progress, a contemporary synthesis, and future directions
The 1990s, the “decade of the brain,” witnessed major advances in the study of
visual perception, cognition, and consciousness. Impressive techniques in
neurophysiology, neuroanatomy, neuropsychology, electrophysiology, psychophysics
and brain-imaging were developed to address how the nervous system transforms
and represents visual inputs. Many of these advances have dealt with the
steady-state properties of processing. To complement this “steady-state
approach,” more recent research emphasized the importance of dynamic aspects of
visual processing. Visual masking has been a paradigm of choice for more than a
century when it comes to the study of dynamic vision. A recent workshop
(http://lpsy.epfl.ch/VMworkshop/), held in Delmenhorst, Germany,
brought together an international group of researchers to present
state-of-the-art research on dynamic visual processing with a focus on visual
masking. This special issue presents peer-reviewed contributions by the workshop
participants and provides a contemporary synthesis of how visual masking can
inform the dynamics of human perception, cognition, and consciousness
Neuro-cognitive mechanisms of conscious and unconscious visual perception: From a plethora of phenomena to general principles
Psychological and neuroscience approaches have promoted much progress in
elucidating the cognitive and neural mechanisms that underlie phenomenal visual
awareness during the last decades. In this article, we provide an overview of
the latest research investigating important phenomena in conscious and
unconscious vision. We identify general principles to characterize conscious and
unconscious visual perception, which may serve as important building blocks for
a unified model to explain the plethora of findings. We argue that in particular
the integration of principles from both conscious and unconscious vision is
advantageous and provides critical constraints for developing adequate
theoretical models. Based on the principles identified in our review, we outline
essential components of a unified model of conscious and unconscious visual
perception. We propose that awareness refers to consolidated
visual representations, which are accessible to the entire brain and therefore
globally available. However, visual awareness not only depends
on consolidation within the visual system, but is additionally the result of a
post-sensory gating process, which is mediated by higher-level cognitive control
mechanisms. We further propose that amplification of visual representations by
attentional sensitization is not exclusive to the domain of conscious
perception, but also applies to visual stimuli, which remain unconscious.
Conscious and unconscious processing modes are highly interdependent with
influences in both directions. We therefore argue that exactly this
interdependence renders a unified model of conscious and unconscious visual
perception valuable. Computational modeling jointly with focused experimental
research could lead to a better understanding of the plethora of empirical
phenomena in consciousness research
Covert Reorganization of Implicit Task Representations by Slow Wave Sleep
There is evidence that slow wave sleep (SWS) promotes the consolidation of memories that are subserved by mediotemporal- and hippocampo-cortical neural networks. In contrast to implicit memories, explicit memories are accompanied by conscious (attentive and controlled) processing. Awareness at pre-sleep encoding has been recognized as critical for the off-line memory consolidation. The present study elucidated the role of task-dependent cortical activation guided by attentional control at pre-sleep encoding for the consolidation of hippocampus-dependent memories during sleep.A task with a hidden regularity was used (Number Reduction Task, NRT), in which the responses that can be implicitly predicted by the hidden regularity activate hippocampo-cortical networks more strongly than responses that cannot be predicted. Task performance was evaluated before and after early-night sleep, rich in SWS, and late-night sleep, rich in rapid eye movement (REM) sleep. In implicit conditions, slow cortical potentials (SPs) were analyzed to reflect the amount of controlled processing and the localization of activated neural task representations.During implicit learning before sleep, the amount of controlled processing did not differ between unpredictable and predictable responses, nor between early- and late-night sleep groups. A topographic re-distribution of SPs indicating a spatial reorganization occurred only after early, not after late sleep, and only for predictable responses. These SP changes correlated with the amount of SWS and were covert because off-line RT decrease did not differentiate response types or sleep groups.It is concluded that SWS promotes the neural reorganization of task representations that rely on the hippocampal system despite absence of conscious access to these representations.Original neurophysiologic evidence is provided for the role of SWS in the consolidation of memories encoded with hippocampo-cortical interaction before sleep. It is demonstrated that this SWS-mediated mechanism does not depend critically on explicitness at learning nor on the amount of controlled executive processing during pre-sleep encoding
Influence of Stimulant Medication and Response Speed on Lateralization of Movement-Related Potentials in Attention-Deficit/Hyperactivity Disorder
Hyperactivity is one of the core symptoms in attention deficit hyperactivity disorder (ADHD). However, it remains unclear in which way the motor system itself and its development are affected by the disorder. Movement-related potentials (MRP) can separate different stages of movement execution, from the programming of a movement to motor post-processing and memory traces. Pre-movement MRP are absent or positive during early childhood and display a developmental increase of negativity. We examined the influences of response-speed, an indicator of the level of attention, and stimulant medication on lateralized MRP in 16 children with combined type ADHD compared to 20 matched healthy controls. We detected a significantly diminished lateralisation of MRP over the pre-motor and primary motor cortex during movement execution (initial motor potential peak, iMP) in patients with ADHD. Fast reactions (indicating increased visuo-motor attention) led to increased lateralized negativity during movement execution only in healthy controls, while in children with ADHD faster reaction times were associated with more positive amplitudes. Even though stimulant medication had some effect on attenuating group differences in lateralized MRP, this effect was insufficient to normalize lateralized iMP amplitudes.A reduced focal (lateralized) motor cortex activation during the command to muscle contraction points towards an immature motor system and a maturation delay of the (pre-) motor cortex in children with ADHD. A delayed maturation of the neuronal circuitry, which involves primary motor cortex, may contribute to ADHD pathophysiology
A Fast and Reliable Method for Simultaneous Waveform, Amplitude and Latency Estimation of Single-Trial EEG/MEG Data
The amplitude and latency of single-trial EEG/MEG signals may provide valuable information concerning human brain functioning. In this article we propose a new method to reliably estimate single-trial amplitude and latency of EEG/MEG signals. The advantages of the method are fourfold. First, no a-priori specified template function is required. Second, the method allows for multiple signals that may vary independently in amplitude and/or latency. Third, the method is less sensitive to noise as it models data with a parsimonious set of basis functions. Finally, the method is very fast since it is based on an iterative linear least squares algorithm. A simulation study shows that the method yields reliable estimates under different levels of latency variation and signal-to-noise ratioÕs. Furthermore, it shows that the existence of multiple signals can be correctly determined. An application to empirical data from a choice reaction time study indicates that the method describes these data accurately
Measurement of ERP latency differences: A comparison of single-participant and jackknife-based scoring methods
Reduction of Pavlovian bias in schizophrenia: Enhanced effects in clozapine-administered patients
The negative symptoms of schizophrenia (SZ) are associated with a pattern of reinforcement learning (RL) deficits likely related to degraded representations of reward values. However, the RL tasks used to date have required active responses to both reward and punishing stimuli. Pavlovian biases have been shown to affect performance on these tasks through invigoration of action to reward and inhibition of action to punishment, and may be partially responsible for the effects found in patients. Forty-five patients with schizophrenia and 30 demographically-matched controls completed a four-stimulus reinforcement learning task that crossed action ("Go" or "NoGo") and the valence of the optimal outcome (reward or punishment-avoidance), such that all combinations of action and outcome valence were tested. Behaviour was modelled using a six-parameter RL model and EEG was simultaneously recorded. Patients demonstrated a reduction in Pavlovian performance bias that was evident in a reduced Go bias across the full group. In a subset of patients administered clozapine, the reduction in Pavlovian bias was enhanced. The reduction in Pavlovian bias in SZ patients was accompanied by feedback processing differences at the time of the P3a component. The reduced Pavlovian bias in patients is suggested to be due to reduced fidelity in the communication between striatal regions and frontal cortex. It may also partially account for previous findings of poorer "Go-learning" in schizophrenia where "Go" responses or Pavlovian consistent responses are required for optimal performance. An attenuated P3a component dynamic in patients is consistent with a view that deficits in operant learning are due to impairments in adaptively using feedback to update representations of stimulus value
Role of Basal Ganglia Circuits in Resisting Interference by Distracters: A swLORETA Study
BACKGROUND: The selection of task-relevant information requires both the focalization of attention on the task and resistance to interference from irrelevant stimuli. Both mechanisms rely on a dorsal frontoparietal network, while focalization additionally involves a ventral frontoparietal network. The role of subcortical structures in attention is less clear, despite the fact that the striatum interacts significantly with the frontal cortex via frontostriatal loops. One means of investigating the basal ganglia's contributions to attention is to examine the features of P300 components (i.e. amplitude, latency, and generators) in patients with basal ganglia damage (such as in Parkinson's disease (PD), in which attention is often impaired). Three-stimulus oddball paradigms can be used to study distracter-elicited and target-elicited P300 subcomponents. METHODOLOGY/PRINCIPAL FINDINGS: In order to compare distracter- and target-elicited P300 components, high-density (128-channel) electroencephalograms were recorded during a three-stimulus visual oddball paradigm in 15 patients with early PD and 15 matched healthy controls. For each subject, the P300 sources were localized using standardized weighted low-resolution electromagnetic tomography (swLORETA). Comparative analyses (one-sample and two-sample t-tests) were performed using SPM5® software. The swLORETA analyses showed that PD patients displayed fewer dorsolateral prefrontal (DLPF) distracter-P300 generators but no significant differences in target-elicited P300 sources; this suggests dysfunction of the DLPF cortex when the executive frontostriatal loop is disrupted by basal ganglia damage. CONCLUSIONS/SIGNIFICANCE: Our results suggest that the cortical attention frontoparietal networks (mainly the dorsal one) are modulated by the basal ganglia. Disruption of this network in PD impairs resistance to distracters, which results in attention disorders
Nobody Is Perfect: ERP Effects Prior to Performance Errors in Musicians Indicate Fast Monitoring Processes
Background: One central question in the context of motor control and action monitoring is at what point in time errors can be detected. Previous electrophysiological studies investigating this issue focused on brain potentials elicited after erroneous responses, mainly in simple speeded response tasks. In the present study, we investigated brain potentials before the commission of errors in a natural and complex situation. Methodology/Principal Findings: Expert pianists bimanually played scales and patterns while the electroencephalogram (EEG) was recorded. Event-related potentials (ERPs) were computed for correct and incorrect performances. Results revealed differences already 100 ms prior to the onset of a note (i.e., prior to auditory feedback). We further observed that erroneous keystrokes were delayed in time and pressed more slowly. Conclusions: Our data reveal neural mechanisms in musicians that are able to detect errors prior to the execution of erroneous movements. The underlying mechanism probably relies on predictive control processes that compare the predicted outcome of an action with the action goal
- …
