1,361 research outputs found
Absolute velocity measurements in sunspot umbrae
In sunspot umbrae, convection is largely suppressed by the strong magnetic
field. Previous measurements reported on negligible convective flows in umbral
cores. Based on this, numerous studies have taken the umbra as zero reference
to calculate Doppler velocities of the ambient active region. To clarify the
amount of convective motion in the darkest part of umbrae, we directly measured
Doppler velocities with an unprecedented accuracy and precision. We performed
spectroscopic observations of sunspot umbrae with the Laser Absolute Reference
Spectrograph (LARS) at the German Vacuum Tower Telescope. A laser frequency
comb enabled the calibration of the high-resolution spectrograph and absolute
wavelength positions. A thorough spectral calibration, including the
measurement of the reference wavelength, yielded Doppler shifts of the spectral
line Ti i 5713.9 {\AA} with an uncertainty of around 5 m s-1. The measured
Doppler shifts are a composition of umbral convection and magneto-acoustic
waves. For the analysis of convective shifts, we temporally average each
sequence to reduce the superimposed wave signal. Compared to convective
blueshifts of up to -350 m s-1 in the quiet Sun, sunspot umbrae yield a
strongly reduced convective blueshifts around -30 m s-1. {W}e find that the
velocity in a sunspot umbra correlates significantly with the magnetic field
strength, but also with the umbral temperature defining the depth of the
titanium line. The vertical upward motion decreases with increasing field
strength. Extrapolating the linear approximation to zero magnetic field
reproduces the measured quiet Sun blueshift. Simply taking the sunspot umbra as
a zero velocity reference for the calculation of photospheric Dopplergrams can
imply a systematic velocity error.Comment: 10 pages, 7 figures, 2 tables, Appendix with 5 figure
Self-organization of hydrophobic soil and granular surfaces
Soil can become extremely water repellent following forest fires or oil spillages, thus preventing penetration of water and increasing runoff and soil erosion. Here the authors show that evaporation of a droplet from the surface of a hydrophobic granular material can be an active process, lifting, self-coating, and selectively concentrating small solid grains. Droplet evaporation leads to the formation of temporary liquid marbles and, as droplet volume reduces, particles of different wettabilities compete for water-air interfacial surface area. This can result in a sorting effect with self-organization of a mixed hydrophobic-hydrophilic aggregate into a hydrophobic shell surrounding a hydrophilic core
The photospheric solar oxygen project: III. Investigation of the centre-to-limb variation of the 630nm [OI]-NiI blend
The solar photospheric abundance of oxygen is still a matter of debate. For
about ten years some determinations have favoured a low oxygen abundance which
is at variance with the value inferred by helioseismology. Among the oxygen
abundance indicators, the forbidden line at 630nm has often been considered the
most reliable even though it is blended with a NiI line. In Papers I and Paper
II of this series we reported a discrepancy in the oxygen abundance derived
from the 630nm and the subordinate [OI] line at 636nm in dwarf stars, including
the Sun. Here we analyse several, in part new, solar observations of the the
centre-to-limb variation of the spectral region including the blend at 630nm in
order to separate the individual contributions of oxygen and nickel. We analyse
intensity spectra observed at different limb angles in comparison with line
formation computations performed on a CO5BOLD 3D hydrodynamical simulation of
the solar atmosphere. The oxygen abundances obtained from the forbidden line at
different limb angles are inconsistent if the commonly adopted nickel abundance
of 6.25 is assumed in our local thermodynamic equilibrium computations. With a
slightly lower nickel abundance, A(Ni)~6.1, we obtain consistent fits
indicating an oxygen abundance of A(O)=8.73+/-0.05. At this value the
discrepancy with the subordinate oxygen line remains. The derived value of the
oxygen abundance supports the notion of a rather low oxygen abundance in the
solar hotosphere. However, it is disconcerting that the forbidden oxygen lines
at 630 and 636nm give noticeably different results, and that the nickel
abundance derived here from the 630nm blend is lower than expected from other
nickel lines.Comment: to appear in A&
Effect of Particle Size on Droplet Infiltration into Hydrophobic Porous Media As a Model of Water Repellent Soil
The wettability of soil is of great importance for plants and soil biota, and in determining the risk for preferential flow, surface runoff, flooding,and soil erosion. The molarity of ethanol droplet (MED) test is widely used for quantifying the severity of water repellency in soils that show reduced wettability and is assumed to be independent of soil particle size. The minimum ethanol concentration at which droplet penetration occurs within a short time (≤10 s) provides an estimate of the initial advancing contact angle at which spontaneous wetting is expected. In this study, we test the assumption of particle size independence using a simple model of soil, represented by layers of small (0.2–2 mm) diameter beads that predict the effect of changing bead radius in the top layer on capillary driven imbibition. Experimental results using a three-layer bead system show broad agreement with the model and demonstrate a dependence of the MED test on particle size. The results show that the critical initial advancing contact angle for penetration can be considerably less than 90° and varies with particle size, demonstrating that a key assumption currently used in the MED testing of soil is not necessarily valid
Comb-calibrated solar spectroscopy through a multiplexed single-mode fiber channel
We investigate a new scheme for astronomical spectrograph calibration using
the laser frequency comb at the Solar Vacuum Tower Telescope on Tenerife. Our
concept is based upon a single-mode fiber channel, that simultaneously feeds
the spectrograph with comb light and sunlight. This yields nearly perfect
spatial mode matching between the two sources. In combination with the absolute
calibration provided by the frequency comb, this method enables extremely
robust and accurate spectroscopic measurements. The performance of this scheme
is compared to a sequence of alternating comb and sunlight, and to absorption
lines from Earth's atmosphere. We also show how the method can be used for
radial-velocity detection by measuring the well-explored 5-minute oscillations
averaged over the full solar disk. Our method is currently restricted to solar
spectroscopy, but with further evolving fiber-injection techniques it could
become an option even for faint astronomical targets.Comment: 21 pages, 11 figures. A video abstract for this paper is available on
youtube. For watching the video, please follow
https://www.youtube.com/watch?v=oshdZgrt89I . The video abstract is also
available for streaming and download on the related article website of New
Journal of Physic
Semimetalic antiferromagnetism in the half-Heusler compound CuMnSb
The half-Heusler compound CuMnSb, the first antiferromagnet (AFM) in the
Mn-based class of Heuslers and half-Heuslers that contains several conventional
and half metallic ferromagnets, shows a peculiar stability of its magnetic
order in high magnetic fields. Density functional based studies reveal an
unusual nature of its unstable (and therefore unseen) paramagnetic state, which
for one electron less (CuMnSn, for example) would be a zero gap semiconductor
(accidentally so) between two sets of very narrow, topologically separate bands
of Mn 3d character. The extremely flat Mn 3d bands result from the environment:
Mn has four tetrahedrally coordinated Cu atoms whose 3d states lie well below
the Fermi level, and the other four tetrahedrally coordinated sites are empty,
leaving chemically isolated Mn 3d states. The AFM phase can be pictured
heuristically as a self-doped CuMnSb compensated semimetal
with heavy mass electrons and light mass holes, with magnetic coupling
proceeding through Kondo and/or antiKondo coupling separately through the two
carrier types. The ratio of the linear specific heat coefficient and the
calculated Fermi level density of states indicates a large mass enhancement
, or larger if a correlated band structure is taken as the
reference
Soil seal development under simulated rainfall: structural, physical and hydrological dynamics
This study delivers new insights into rainfall-induced seal formation through a novel approach in the use of X-ray Computed Tomography (CT). Up to now seal and crust thickness have been directly quantified mainly through visual examination of sealed/crusted surfaces, and there has been no quantitative method to estimate this important property. X-ray CT images were quantitatively analysed to derive formal measures of seal and crust thickness. A factorial experiment was established in the laboratory using open-topped microcosms packed with soil. The factors investigated were soil type (three soils: silty clay loam - ZCL, sandy silt loam - SZL, sandy loam - SL) and rainfall duration (2-14 minutes). Surface seal formation was induced by applying artificial rainfall events, characterised by variable duration, but constant kinetic energy, intensity, and raindrop size distribution. Soil porosities derived from CT scans were used to quantify the thickness of the rainfall-induced surface seals and reveal temporal seal micro-morphological variations with increasing rainfall duration. In addition, the water repellency and infiltration dynamics of the developing seals were investigated by measuring water drop penetration time (WDPT) and unsaturated hydraulic conductivity (Kun). The range of seal thicknesses detected varied from 0.6 - 5.4 mm. Soil textural characteristics and OM content played a central role in the development of rainfall-induced seals, with coarser soil particles and lower OM content resulting in thicker seals. Two different trends in soil porosity vs. depth were identified: i) for SL soil porosity was lowest at the immediate soil surface, it then increased constantly with depth till the median porosity of undisturbed soil was equalled; ii) for ZCL and SL the highest reduction in porosity, as compared to the median porosity of undisturbed soil, was observed in a well-defined zone of maximum porosity reduction c. 0.24 - 0.48 mm below the soil surface. This contrasting behaviour was related to different dynamics and processes of seal formation which depended on the soil properties. The impact of rainfall-induced surface sealing on the hydrological behaviour of soil (as represented by WDTP and Kun) was rapid and substantial: an average 60% reduction in Kun occurred for all soils between 2 and 9 minutes rainfall, and water repellent surfaces were identified for SZL and ZCL. This highlights that the condition of the immediate surface of agricultural soils involving rainfall-induced structural seals has a strong impact in the overall ability of soil to function as water reservoir
MEPS Workload Balance and Capacity Rationalization
Prepared for: U.S. Military Entrance Processing Command (USMEPCOM)
2834 Green Bay Road
North Chicago, IL 60064-3091The U.S. Military Entrance Processing Command (USMEPCOM) is charged with screening all applicants for enlistment into the
U.S. Armed Forces according to the qualification standards of each of the four services. These applicants are screened and
processed at one of 65 Military Entrance Processing Stations (MEPS) distributed throughout the United States, to include Alaska,
Hawaii, and Puerto Rico. Archived data exists that describes the daily work each site has experienced in the broad categories such
of medical, testing, and processing. The workload between stations can vary widely, as certain sites serve areas with denser
populations of applicants. The workload at each station also tends to vary according to time of year, as well as time of month. This
workload variability at and between MEPS presents unique challenges for deciding on optimal capacity levels. We develop a short
list of candidate locations that exhibit particularly high congestion relative to other MEPS and regions. Namely, 7th Battalion in
California and 10th Battalion in Florida each contain several MEPS that rank highly with respect to relative congestion. Another
regional area with substantial relative congestion includes MEPS from 4th and 12 Battalions. Finally, individual MEPS such an
Minneapolis and Columbus exhibit consistent high relative congestion in the medical technician workflow, while Denver and
Montgomery exhibit high congestion in the human resources workflow.U.S. Military Entrance Procession Command (2USMEPCOM) 834 Green Bay Road, North Chicago, IL 60064-3091Approved for public release; distribution is unlimited
A Laser Frequency Comb System for Absolute Calibration of the VTT Echelle Spectrograph
A wavelength calibration system based on a laser frequency comb (LFC) was
developed in a co-operation between the Kiepenheuer-Institut f\"ur
Sonnenphysik, Freiburg, Germany and the Max-Planck-Institut f\"ur Quantenoptik,
Garching, Germany for permanent installation at the German Vacuum Tower
Telescope (VTT) on Tenerife, Canary Islands. The system was installed
successfully in October 2011. By simultaneously recording the spectra from the
Sun and the LFC, for each exposure a calibration curve can be derived from the
known frequencies of the comb modes that is suitable for absolute calibration
at the meters per second level. We briefly summarize some topics in solar
physics that benefit from absolute spectroscopy and point out the advantages of
LFC compared to traditional calibration techniques. We also sketch the basic
setup of the VTT calibration system and its integration with the existing
echelle spectrograph.Comment: 9 pages, 2 figures; Solar Physics 277 (2012
Cumulant expansion for studying damped quantum solitons
The quantum statistics of damped optical solitons is studied using
cumulant-expansion techniques. The effect of absorption is described in terms
of ordinary Markovian relaxation theory, by coupling the optical field to a
continuum of reservoir modes. After introduction of local bosonic field
operators and spatial discretization pseudo-Fokker-Planck equations for
multidimensional s-parameterized phase-space functions are derived. These
partial differential equations are equivalent to an infinite set of ordinary
differential equations for the cumulants of the phase-space functions.
Introducing an appropriate truncation condition, the resulting finite set of
cumulant evolution equations can be solved numerically. Solutions are presented
in Gaussian approximation and the quantum noise is calculated, with special
emphasis on squeezing and the recently measured spectral photon-number
correlations [Spaelter et al., Phys. Rev. Lett. 81, 786 (1998)].Comment: 17 pages, 13 figures, revtex, psfig, multicols, published in
Phys.Rev.
- …
