3,085 research outputs found

    Bioaffinity detection of pathogens on surfaces

    Get PDF
    The demand for improved technologies capable of rapidly detecting pathogens with high sensitivity and selectivity in complex environments continues to be a significant challenge that helps drive the development of new analytical techniques. Surface-based detection platforms are particularly attractive as multiple bioaffinity interactions between different targets and corresponding probe molecules can be monitored simultaneously in a single measurement. Furthermore, the possibilities for developing new signal transduction mechanisms alongside novel signal amplification strategies aremuchmore varied. In this article, we describe some of the latest advances in the use of surface bioaffinity detection of pathogens. Three major sections will be discussed: (i) a brief overview on the choice of probe molecules such as antibodies, proteins and aptamers specific to pathogens and surface attachment chemistries to immobilize those probes onto various substrates, (ii) highlighting examples among the current generation of surface biosensors, and (iii) exploring emerging technologies that are highly promising and likely to form the basis of the next generation of pathogenic sensors

    Simulation studies of improved sounding systems

    Get PDF
    Two instrument designs for indirect satellite sounding of the atmosphere in the infrared are represented by the High Resolution Infra-Red Sounder, Model 2 (HIRS-2) and by the Advanced Meteorological Temperature Sounder (AMTS). The relative capabilities of the two instruments were tested by simulating satellite measurements from a group of temperature soundings, allowing the two participants to retrieve the temperature profiles from the simulated data, and comparing the results with the original temperature profiles. Four data sets were produced from radiosondes data extrapolated to a suitable altitude, representing continents and oceans, between 30S and 30N. From the information available, temperature profiles were retrieved by two different methods, statistical regression and inversion of the radiative transfer equation. Results show the consequence of greater spectral purity, concomitant increase in the number of spectral intervals, and the better spatial resolution in partly clouded areas. At the same time, the limitation of the HIRS-2 without its companion instrument leads to some results which should be ignored in comparing the two instruments. A clear superiority of AMTS results is shown

    A Coordinated Radio Afterglow Program

    Get PDF
    We describe a ground-based effort to find and study afterglows at centimeter and millimeter wavelengths. We have observed all well-localized gamma-ray bursts in the Northern and Southern sky since BeppoSAX first started providing rapid positions in early 1997. Of the 23 GRBs for which X-ray afterglows have been detected, 10 have optical afterglows and 9 have radio afterglows. A growing number of GRBs have both X-ray and radio afterglows but lack a corresponding optical afterglow.Comment: To appear in Proc. of the 5th Huntsville Gamma-Ray Burst Symposium, 5 pages, LaTe

    Plastic Deformation in Laser-Induced Shock Compression of Monocrystalline Copper

    Get PDF
    Copper monocrystals were subjected to shock compression at pressures of 10–60 GPa by a short (3 ns initial) duration laser pulse. Transmission electron microscopy revealed features consistent with previous observations of shock-compressed copper, albeit at pulse durations in the µs regime. The results suggest that the defect structure is generated at the shock front. A mechanism for dislocation generation is presented, providing a realistic prediction of dislocation density as a function of pressure. The threshold stress for deformation twinning in shock compression is calculated from the constitutive equations for slip, twinning, and the Swegle-Grady relationship

    Photoelectrochemical and theoretical investigations of spinel type ferrites (MxFe3-xO4) for water splitting: A mini-review

    Get PDF
    Solar-assisted water splitting using photoelectrochemical cells (PECs) is one of the promising pathways for the production of hydrogen for renewable energy storage. The nature of the semiconductor material is the primary factor that controls the overall energy conversion efficiency. Finding semiconductor materials with appropriate semiconducting properties (stability, efficient charge separation and transport, abundant, visible light absorption) is still a challenge for developing materials for solar water splitting. Owing to the suitable bandgap for visible light harvesting and the abundance of iron-based oxide semiconductors, they are promising candidates for PECs and have received much research attention. Spinel ferrites are subclasses of iron oxides derived from the classical magnetite (FeIIFe2 IIIO4) in which the FeII is replaced by one (some cases two) additional divalent metals. They are generally denoted as MxFe3-xO4 (M=Ca, Mg, Zn, Co, Ni, Mn, and so on) and mostly crystallize in spinel or inverse spinel structures. In this mini review, we present the current state of research in spinel ferrites as photoelectrode materials for PECs application. Strategies to improve energy conversion efficiency (nanostructuring, surface modification, and heterostructuring) will be presented. Furthermore, theoretical findings related to the electronic structure, bandgap, and magnetic properties will be presented and compared with experimental results

    Nano-scale reservoir computing

    Full text link
    This work describes preliminary steps towards nano-scale reservoir computing using quantum dots. Our research has focused on the development of an accumulator-based sensing system that reacts to changes in the environment, as well as the development of a software simulation. The investigated systems generate nonlinear responses to inputs that make them suitable for a physical implementation of a neural network. This development will enable miniaturisation of the neurons to the molecular level, leading to a range of applications including monitoring of changes in materials or structures. The system is based around the optical properties of quantum dots. The paper will report on experimental work on systems using Cadmium Selenide (CdSe) quantum dots and on the various methods to render the systems sensitive to pH, redox potential or specific ion concentration. Once the quantum dot-based systems are rendered sensitive to these triggers they can provide a distributed array that can monitor and transmit information on changes within the material.Comment: 8 pages, 9 figures, accepted for publication in Nano Communication Networks, http://www.journals.elsevier.com/nano-communication-networks/. An earlier version was presented at the 3rd IEEE International Workshop on Molecular and Nanoscale Communications (IEEE MoNaCom 2013

    A randomized trial of vertebroplasty for painful osteoporotic vertebral fractures

    Full text link
    Background Vertebroplasty has become a common treatment for painful osteoporotic vertebral fractures, but there is limited evidence to support its use. Methods We performed a multicenter, randomized, double-blind, placebo-controlled trial in which participants with one or two painful osteoporotic vertebral fractures that were of less than 12 months\u27 duration and unhealed, as confirmed by magnetic resonance imaging, were randomly assigned to undergo vertebroplasty or a sham procedure. Participants were stratified according to treatment center, sex, and duration of symptoms (&lt;6 weeks or 6 weeks). Outcomes were assessed at 1 week and at 1, 3, and 6 months. The primary outcome was overall pain (on a scale of 0 to 10, with 10 being the maximum imaginable pain) at 3 months. Results A total of 78 participants were enrolled, and 71 (35 of 38 in the vertebroplasty group and 36 of 40 in the placebo group) completed the 6-month follow-up (91%). Vertebroplasty did not result in a significant advantage in any measured outcome at any time point. There were significant reductions in overall pain in both study groups at each follow-up assessment. At 3 months, the mean (&plusmn;SD) reductions in the score for pain in the vertebroplasty and control groups were 2.6&plusmn;2.9 and 1.9&plusmn;3.3, respectively (adjusted between-group difference, 0.6; 95% confidence interval, &ndash;0.7 to 1.8). Similar improvements were seen in both groups with respect to pain at night and at rest, physical functioning, quality of life, and perceived improvement. Seven incident vertebral fractures (three in the vertebroplasty group and four in the placebo group) occurred during the 6-month follow-up period. Conclusions We found no beneficial effect of vertebroplasty as compared with a sham procedure in patients with painful osteoporotic vertebral fractures, at 1 week or at 1, 3, or 6 months after treatment. (Australian New Zealand Clinical Trials Registry number, ACTRN012605000079640.)<br /
    corecore