323 research outputs found
On non existence of tokamak equilibria with purely poloidal flow
It is proved that irrespective of compressibility tokamak steady states with
purely poloidal mass flow can not exist in the framework of either
magnetohydrodynamics (MHD) or Hall MHD models. Non-existence persists within
single fluid plasma models with pressure anisotropy and incompressible flows.Comment: The conclusion reported in the last sentence of the first paragraph
of Sec. V in the version of the paper published in Physics of Plasmas is
incorrect. The correct conclusion is given here (15 pages
Some Applications of Fractional Equations
We present two observations related to theapplication of linear (LFE) and
nonlinear fractional equations (NFE). First, we give the comparison and
estimates of the role of the fractional derivative term to the normal diffusion
term in a LFE. The transition of the solution from normal to anomalous
transport is demonstrated and the dominant role of the power tails in the long
time asymptotics is shown. Second, wave propagation or kinetics in a nonlinear
media with fractal properties is considered. A corresponding fractional
generalization of the Ginzburg-Landau and nonlinear Schrodinger equations is
proposed.Comment: 11 page
Algebraic damping in the one-dimensional Vlasov equation
We investigate the asymptotic behavior of a perturbation around a spatially
non homogeneous stable stationary state of a one-dimensional Vlasov equation.
Under general hypotheses, after transient exponential Landau damping, a
perturbation evolving according to the linearized Vlasov equation decays
algebraically with the exponent -2 and a well defined frequency. The
theoretical results are successfully tested against numerical -body
simulations, corresponding to the full Vlasov dynamics in the large limit,
in the case of the Hamiltonian mean-field model. For this purpose, we use a
weighted particles code, which allows us to reduce finite size fluctuations and
to observe the asymptotic decay in the -body simulations.Comment: 26 pages, 8 figures; text slightly modified, references added, typos
correcte
Small BGK waves and nonlinear Landau damping
Consider 1D Vlasov-poisson system with a fixed ion background and periodic
condition on the space variable. First, we show that for general homogeneous
equilibria, within any small neighborhood in the Sobolev space W^{s,p}
(p>1,s<1+(1/p)) of the steady distribution function, there exist nontrivial
travelling wave solutions (BGK waves) with arbitrary minimal period and
traveling speed. This implies that nonlinear Landau damping is not true in
W^{s,p}(s<1+(1/p)) space for any homogeneous equilibria and any spatial period.
Indeed, in W^{s,p} (s<1+(1/p)) neighborhood of any homogeneous state, the long
time dynamics is very rich, including travelling BGK waves, unstable
homogeneous states and their possible invariant manifolds. Second, it is shown
that for homogeneous equilibria satisfying Penrose's linear stability
condition, there exist no nontrivial travelling BGK waves and unstable
homogeneous states in some W^{s,p} (p>1,s>1+(1/p)) neighborhood. Furthermore,
when p=2,we prove that there exist no nontrivial invariant structures in the
H^{s} (s>(3/2)) neighborhood of stable homogeneous states. These results
suggest the long time dynamics in the W^{s,p} (s>1+(1/p)) and particularly, in
the H^{s} (s>(3/2)) neighborhoods of a stable homogeneous state might be
relatively simple. We also demonstrate that linear damping holds for initial
perturbations in very rough spaces, for linearly stable homogeneous state. This
suggests that the contrasting dynamics in W^{s,p} spaces with the critical
power s=1+(1/p) is a trully nonlinear phenomena which can not be traced back to
the linear level
Toward a first-principles integrated simulation of tokamak edge plasmas
Performance of the ITER is anticipated to be highly sensitive to the edge plasma condition. The edge pedestal in ITER needs to be predicted from an integrated simulation of the necessary first-principles, multi-scale physics codes. The mission of the SciDAC Fusion Simulation Project (FSP) Prototype Center for Plasma Edge Simulation (CPES) is to deliver such a code integration framework by (1) building new kinetic codes XGC0 and XGC1, which can simulate the edge pedestal buildup; (2) using and improving the existing MHD codes ELITE, M3D-OMP, M3D-MPP and NIMROD, for study of large-scale edge instabilities called Edge Localized Modes (ELMs); and (3) integrating the codes into a framework using cutting-edge computer science technology. Collaborative effort among physics, computer science, and applied mathematics within CPES has created the first working version of the End-to-end Framework for Fusion Integrated Simulation (EFFIS), which can be used to study the pedestal-ELM cycles
Fractional Variations for Dynamical Systems: Hamilton and Lagrange Approaches
Fractional generalization of an exterior derivative for calculus of
variations is defined. The Hamilton and Lagrange approaches are considered.
Fractional Hamilton and Euler-Lagrange equations are derived. Fractional
equations of motion are obtained by fractional variation of Lagrangian and
Hamiltonian that have only integer derivatives.Comment: 21 pages, LaTe
Psi-Series Solution of Fractional Ginzburg-Landau Equation
One-dimensional Ginzburg-Landau equations with derivatives of noninteger
order are considered. Using psi-series with fractional powers, the solution of
the fractional Ginzburg-Landau (FGL) equation is derived. The leading-order
behaviours of solutions about an arbitrary singularity, as well as their
resonance structures, have been obtained. It was proved that fractional
equations of order with polynomial nonlinearity of order have the
noninteger power-like behavior of order near the singularity.Comment: LaTeX, 19 pages, 2 figure
Life Satisfaction and Sense of Coherence of Breast Cancer Survivors Compared to Women with Mental Depression, Arterial Hypertension and Healthy Controls
The purpose of the study was to compare the life satisfaction (LS) and sense of coherence (SOC) of women recovering from breast cancer (BC) to LS and SOC of women with depression or hypertension and of healthy controls. Finnish Health and Social Support (HeSSup) follow-up survey data in 2003 was linked with national health registries. BC patients were followed up for mortality until the end of 2012. The statistical computations were carried out with SAS (R). There were no significant differences in LS and SOC between the groups with BC, arterial hypertension or healthy controls. Women recovering from BC are as satisfied with their life as healthy controls, and their perceived LS is better and SOC is stronger compared to women with depression. SOC correlated positively (r(2) = 0.36, p <0.001) with LS. However, more studies on determinants of the LS are needed for designing and organizing health care services for BC survivors.Peer reviewe
- …
