841 research outputs found

    Anisotropic thermal expansion and magnetostriction of YNi2_2B2_2C single crystals

    Full text link
    We present results of anisotropic thermal expansion and low temperature magnetostriction measurements on YNi2_2B2_2C single crystals grown by high temperature flux and floating zone techniques. Quantum oscillations of magnetostriction were observed at low temperatures for HcH \| c starting at fields significantly below Hc2H_{c2} (H<0.7Hc2H < 0.7 H_{c2}). Large irreversible, longitudinal magnetostriction was seen in both, in-plane and along the c-axis, directions of the applied magnetic field in the intermediate superconducting state. Anisotropic uniaxial pressure dependencies of TcT_c were evaluated using results of zero field, thermal expansion measurements

    Numerical Investigation of a Mesoscopic Vehicular Traffic Flow Model Based on a Stochastic Acceleration Process

    Full text link
    In this paper a spatial homogeneous vehicular traffic flow model based on a stochastic master equation of Boltzmann type in the acceleration variable is solved numerically for a special driver interaction model. The solution is done by a modified direct simulation Monte Carlo method (DSMC) well known in non equilibrium gas kinetic. The velocity and acceleration distribution functions in stochastic equilibrium, mean velocity, traffic density, ACN, velocity scattering and correlations between some of these variables and their car density dependences are discussed.Comment: 23 pages, 10 figure

    Remote Ischemic Preconditioning Neither Improves Survival nor Reduces Myocardial or Kidney Injury in Patients Undergoing Transcatheter Aortic Valve Implantation (TAVI)

    Get PDF
    BACKGROUND: Peri-interventional myocardial injury occurs frequently during transcatheter aortic valve implantation (TAVI). We assessed the effect of remote ischemic preconditioning (RIPC) on myocardial injury, acute kidney injury (AKIN) and 6-month mortality in patients undergoing TAVI. METHODS: We performed a prospective single-center controlled trial. Sixty-six patients treated with RIPC prior to TAVI were enrolled in the study and were matched to a control group by propensity-score. RIPC was applied to the upper extremity using a conventional tourniquet. Myocardial injury was assessed using high-sensitive troponin-T (hsTnT), and kidney injury was assessed using serum creatinine levels. Data were compared with the Wilcoxon-Rank and McNemar tests. Mortality was analysed with the log-rank test. RESULTS: TAVI led to a significant rise of hsTnT across all patients (p < 0.001). No significant inter-group difference in maximum troponin release or areas-under-the-curve was detected. Medtronic CoreValve and Edwards Sapien valves showed similar peri-interventional troponin kinetics and patients receiving neither valve did benefit from RIPC. AKIN occurred in one RIPC patient and four non-RIPC patients (p = 0.250). No significant difference in 6-month mortality was observed. No adverse events related to RIPC were recorded. CONCLUSION: Our data do not show a beneficial role of RIPC in TAVI patients for cardio- or renoprotection, or improved survival

    Competing Ultrafast Energy Relaxation Pathways in Photoexcited Graphene

    Get PDF
    For most optoelectronic applications of graphene a thorough understanding of the processes that govern energy relaxation of photoexcited carriers is essential. The ultrafast energy relaxation in graphene occurs through two competing pathways: carrier-carrier scattering -- creating an elevated carrier temperature -- and optical phonon emission. At present, it is not clear what determines the dominating relaxation pathway. Here we reach a unifying picture of the ultrafast energy relaxation by investigating the terahertz photoconductivity, while varying the Fermi energy, photon energy, and fluence over a wide range. We find that sufficiently low fluence (\lesssim 4 μ\muJ/cm2^2) in conjunction with sufficiently high Fermi energy (\gtrsim 0.1 eV) gives rise to energy relaxation that is dominated by carrier-carrier scattering, which leads to efficient carrier heating. Upon increasing the fluence or decreasing the Fermi energy, the carrier heating efficiency decreases, presumably due to energy relaxation that becomes increasingly dominated by phonon emission. Carrier heating through carrier-carrier scattering accounts for the negative photoconductivity for doped graphene observed at terahertz frequencies. We present a simple model that reproduces the data for a wide range of Fermi levels and excitation energies, and allows us to qualitatively assess how the branching ratio between the two distinct relaxation pathways depends on excitation fluence and Fermi energy.Comment: Nano Letters 201

    A Vehicular Traffic Flow Model Based on a Stochastic Acceleration Process

    Full text link
    A new vehicular traffic flow model based on a stochastic jump process in vehicle acceleration and braking is introduced. It is based on a master equation for the single car probability density in space, velocity and acceleration with an additional vehicular chaos assumption and is derived via a Markovian ansatz for car pairs. This equation is analyzed using simple driver interaction models in the spatial homogeneous case. Velocity distributions in stochastic equilibrium, together with the car density dependence of their moments, i.e. mean velocity and scattering and the fundamental diagram are presented.Comment: 27 pages, 6 figure

    Upper critical field pecularities of superconducting YNi2B2C and LuNi2B2C

    Full text link
    We present new upper critical field Hc2(T) data in a broad temperature region from 0.3K to Tc for LuNi2B2C and YNi2B2C single crystals with well characterized low impurity scattering rates. The absolute values for all T, in particular Hc2(0), and the sizeable positive curvature (PC) of Hc2(T) at high and intermediate T are explained quantitatively within an effective two-band model. The failure of the isotropic single band approach is discussed in detail. Supported by de Haas van Alphen data, the superconductivity reveals direct insight into details of the electronic structure. The observed maximal PC near Tc gives strong evidence for clean limit type II superconductors.Comment: 4 pages, 2 figures, Phys. Rev. Lett. accepte

    320 Gb/s Nyquist OTDM received by polarization-insensitive time-domain OFT

    Get PDF
    We have demonstrated the generation of a 320 Gb/s Nyquist-OTDM signal by rectangular filtering on an RZ-OTDM signal with the filter bandwidth (320 GHz) equal to the baud rate (320 Gbaud) and the reception of such a Nyquist-OTDM signal using polarization-insensitive time-domain optical Fourier transformation (TD-OFT) followed by passive filtering. After the time-to-frequency mapping in the TD-OFT, the Nyquist-OTDM signal with its characteristic sinc-shaped time-domain trace is converted into an orthogonal frequency division multiplexing (OFDM) signal with sinc-shaped spectra for each subcarrier. The subcarrier frequency spacing of the converted OFDM signal is designed to be larger than the transform-limited case, here 10 times greater than the symbol rate of each subcarrier. Therefore, only passive filtering is needed to extract the subcarriers of the converted OFDM signal. In addition, a polarization diversity scheme is used in the four-wave mixing (FWM) based TD-OFT, and less than 0.5 dB polarization sensitivity is demonstrated in the OTDM receiver.</p

    Slow Noncollinear Coulomb Scattering in the Vicinity of the Dirac Point in Graphene

    Get PDF
    The Coulomb scattering dynamics in graphene in energetic proximity to the Dirac point is investigated by polarization resolved pump-probe spectroscopy and microscopic theory. Collinear Coulomb scattering rapidly thermalizes the carrier distribution in k directions pointing radially away from the Dirac point. Our study reveals, however, that, in almost intrinsic graphene, full thermalization in all directions relying on noncollinear scattering is much slower. For low photon energies, carrier-optical-phonon processes are strongly suppressed and Coulomb mediated noncollinear scattering is remarkably slow, namely on a ps time scale. This effect is very promising for infrared and THz devices based on hot carrier effects

    Hot Carrier Transport and Photocurrent Response in Graphene

    Full text link
    Strong electron-electron interactions in graphene are expected to result in multiple-excitation generation by the absorption of a single photon. We show that the impact of carrier multiplication on photocurrent response is enhanced by very inefficient electron cooling, resulting in an abundance of hot carriers. The hot-carrier-mediated energy transport dominates the photoresponse and manifests itself in quantum efficiencies that can exceed unity, as well as in a characteristic dependence of the photocurrent on gate voltages. The pattern of multiple photocurrent sign changes as a function of gate voltage provides a fingerprint of hot-carrier-dominated transport and carrier multiplication.Comment: 4 pgs, 2 fg
    corecore