580 research outputs found

    P-wave tomography of the mantle beneath the South Pacific Superswell revealed by joint ocean floor and islands broadband seismic experiments

    No full text
    International audienceThree-dimensional P-wave velocity structure of the mantle beneath the South Pacific Superswell is determined through passive broadband seismic experiments on the ocean floor and islands between 2003 and 2005. We collected approximately 1500 relative times of long-period teleseismic P-waves by using a waveform cross-correlation. We analyzed this data set with relative time tomography to depths of 2000 km. The resultant structure shows lateral heterogeneity of approximately +/- 2%, in which a distinct low velocity region is found beneath the center of the Superswell at a depth of 1600 km. At 1200km depth, an elongated low velocity region is found beneath the Society to Pitcairn hotspots. At 800 km depth, two linear low velocity regions are located beneath Tuamotu and Austral islands. Isolated low velocity regions are identified beneath the Society, Marquesas, and Macdonald hotspots at 400 km depth. Our new tomographic images reveal that the large low velocity region rooted in the deep lower mantle is split into two sheets at 1200 km depth and these terminate at approximately 800 km depth. This feature appears to be consistent with the characteristics of a thermo-chemical pile or dome

    Intercomparison of global river discharge simulations focusing on dam operation --- Part II: Multiple models analysis in two case-study river basins, Missouri-Mississippi and Green-Colorado

    Get PDF
    We performed a twofold intercomparison of river discharge regulated by dams under multiple meteorological forcings among multiple global hydrological models for a historical period by simulation. Paper II provides an intercomparison of river discharge simulated by five hydrological models under four meteorological forcings. This is the first global multimodel intercomparison study on dam-regulated river flow. Although the simulations were conducted globally, the Missouri-Mississippi and Green-Colorado Rivers were chosen as case-study sites in this study. The hydrological models incorporate generic schemes of dam operation, not specific to a certain dam. We examined river discharge on a longitudinal section of river channels to investigate the effects of dams on simulated discharge, especially at the seasonal time scale. We found that the magnitude of dam regulation differed considerably among the hydrological models. The difference was attributable not only to dam operation schemes but also to the magnitude of simulated river discharge flowing into dams. That is, although a similar algorithm of dam operation schemes was incorporated in different hydrological models, the magnitude of dam regulation substantially differed among the models. Intermodel discrepancies tended to decrease toward the lower reaches of these river basins, which means model dependence is less significant toward lower reaches. These case-study results imply that, intermodel comparisons of river discharge should be made at different locations along the river’s course to critically examine the performance of hydrological models because the performance can vary with the locations

    Antiferromagnetism in a family of S=1 square lattice coordination polymers NiX2(pyz)2 (X=Cl, Br, I, NCS; pyz=Pyrazine)

    Get PDF
    The crystal structures of NiX2(pyz)2 (X = Cl (1), Br (2), I (3), and NCS (4)) were determined by synchrotron X-ray powder diffraction. All four compounds consist of two-dimensional (2D) square arrays self-assembled from octahedral NiN4X2 units that are bridged by pyz ligands. The 2D layered motifs displayed by 1–4 are relevant to bifluoride-bridged [Ni(HF2)(pyz)2]EF6 (E = P, Sb), which also possess the same 2D layers. In contrast, terminal X ligands occupy axial positions in 1–4 and cause a staggered packing of adjacent layers. Long-range antiferromagnetic (AFM) order occurs below 1.5 (Cl), 1.9 (Br and NCS), and 2.5 K (I) as determined by heat capacity and muon-spin relaxation. The single-ion anisotropy and g factor of 2, 3, and 4 were measured by electron-spin resonance with no evidence for zero–field splitting (ZFS) being observed. The magnetism of 1–4 spans the spectrum from quasi-two-dimensional (2D) to three-dimensional (3D) antiferromagnetism. Nearly identical results and thermodynamic features were obtained for 2 and 4 as shown by pulsed-field magnetization, magnetic susceptibility, as well as their Néel temperatures. Magnetization curves for 2 and 4 calculated by quantum Monte Carlo simulation also show excellent agreement with the pulsed-field data. Compound 3 is characterized as a 3D AFM with the interlayer interaction (J⊥) being slightly stronger than the intralayer interaction along Ni–pyz–Ni segments (Jpyz) within the two-dimensional [Ni(pyz)2]2+ square planes. Regardless of X, Jpyz is similar for the four compounds and is roughly 1 K

    The diagnostic accuracy of high b-value diffusion- and T2-weighted imaging for the detection of prostate cancer: a meta-analysis

    Get PDF
    Purpose: This study aims to investigate the role of diffusion-weighted imaging (DWI) and T2-weighted imaging (T2WI) in combination for the detection of prostate cancer, specifically assessing the role of high b-values (> 1000 s/mm2), with a systematic review and meta-analysis of the existing published data.  Methods: The electronic databases MEDLINE, EMBASE, and OpenSIGLE were searched between inception and September 1, 2017. Eligible studies were those that reported the sensitivity and specificity of DWI and T2WI for the diagnosis of prostate cancer by visual assessment using a histopathologic reference standard. The QUADAS-2 critical appraisal tool was used to assess the quality of included studies. A meta-analysis with pooling of sensitivity, specificity, likelihood, and diagnostic odds ratios was undertaken, and a summary receiver-operating characteristics (sROC) curve was constructed. Predetermined subgroup analysis was also performed.  Results: Thirty-three studies were included in the final analysis, evaluating 2949 patients. The pooled sensitivity and specificity were 0.69 (95% CI 0.68–0.69) and 0.84 (95% CI 0.83–0.85), respectively, and the sROC AUC was 0.84 (95% CI 0.81–0.87). Subgroup analysis showed significantly better sensitivity with high b-values (> 1000 s/mm2). There was high statistical heterogeneity between studies.  Conclusion: The diagnostic accuracy of combined DWI and T2WI is good with high b-values (> 1000 s/mm2) seeming to improve overall sensitivity while maintaining specificity. However, further large-scale studies specifically looking at b-value choice are required before a categorical recommendation can be made

    Adiposity is Associated with Regional Cortical Thinning

    Get PDF
    BACKGROUND: Although obesity is associated with structural changes in brain grey matter, findings have been inconsistent and the precise nature of these changes is unclear. Inconsistencies may partly be due to the use of different volumetric morphometry methods, and the inclusion of participants with comorbidities that exert independent effects on brain structure. The latter concern is particularly critical when sample sizes are modest. The purpose of the current study was to examine the relationship between cortical grey matter and body mass index (BMI), in healthy participants, excluding confounding comorbidities and using a large sample size. SUBJECTS: A total of 202 self-reported healthy volunteers were studied using surface-based morphometry, which permits the measurement of cortical thickness, surface area and cortical folding, independent of each other. RESULTS: Although increasing BMI was not associated with global cortical changes, a more precise, region-based analysis revealed significant thinning of the cortex in two areas: left lateral occipital cortex (LOC) and right ventromedial prefrontal cortex (vmPFC). An analogous region-based analysis failed to find an association between BMI and regional surface area or folding. Participants' age was also found to be negatively associated with cortical thickness of several brain regions; however, there was no overlap between the age- and BMI-related effects on cortical thinning. CONCLUSIONS: Our data suggest that the key effect of increasing BMI on cortical grey matter is a focal thinning in the left LOC and right vmPFC. Consistent implications of the latter region in reward valuation, and goal control of decision and action suggest a possible shift in these processes with increasing BMI.We thank all the participants and the staff of the Wolfson Brain Imaging Centre. This work was supported by the Bernard Wolfe Health Neuroscience Fund (NM, HZ, ISF, PCF), the Wellcome Trust (RGAG/144 to N.M, RGAG/188 to ISF, RNAG/259 to PCF) and the Medical Research Council (G0701497 to KDE).This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ijo.2016.42

    Nd3+-activated CaF2 ceramic lasers

    Get PDF
    Nd,Y:CaF2 and Nd,La:CaF2 ceramics featuring good optical quality have been fabricated by reactive sintering and a hot isostatic pressing method. The transmission spectra, emission spectra, and fluorescence decay curves were measured. Lasing at 1064 and 1065 nm was observed in Nd,Y:CaF2 and Nd,La:CaF2, respectively, upon quasi-continuous-wave pumping by a diode laser emitting at 791 nm. To the best of our knowledge, this is the first demonstration of Nd3+-activated CaF2 ceramic laser

    Emergent quantum disordered phase in Na2_2Co2_2TeO6_6 under intermediate magnetic field along cc axis

    Full text link
    Identifying the exotic quantum spin liquid phase in Kitaev magnets has garnered great research interests and remains a significant challenge. In experiments, most of the proposed candidate materials exhibit an antiferromagnetic (AFM) order at low temperatures, thus the challenge transforms into the searching for a field-driven disordered phase that is distinct from the partially polarized paramagnetic phase after suppressing the AFM order. Recently, Na2_2Co2_2TeO6_6 has been proposed as one of the prime candidates, where the Kitaev interaction is realized by the high-spin t2g5eg2t^{5}_{2g}e^2_g configuration, and spin-orbit entangled Jeff=1/2J_{\rm eff} = 1/2 state in a bond-edge shared honeycomb lattice. In this study, we identify an emergent intermediate disordered phase induced by an external field along the cc-axis of the honeycomb plane. This phase is characterized through magnetization and magnetocaloric effect experiments in high magnetic fields. To explain the experimental results, we propose an effective spin model with large AFM Kitaev interaction, which yields results in good agreement with both our findings and previously reported data. We determine that the effective KK-JJ-Γ\Gamma-Γ\Gamma' model for Na2_2Co2_2TeO6_6 is nearly dual to that of α\alpha-RuCl3_3 under an unitary transformation. Given the insignificant fragility of Na2_2Co2_2TeO6_6 sample, further high-field experiments can be conducted to explore this intermediate-field quantum spin disordered phase.Comment: 12 pages, 8 figure

    Consensus report from the 8th International Forum for Liver Magnetic Resonance Imaging.

    Get PDF
    ObjectivesThe 8th International Forum for Liver Magnetic Resonance Imaging (MRI), held in Basel, Switzerland, in October 2017, brought together clinical and academic radiologists from around the world to discuss developments in and reach consensus on key issues in the field of gadoxetic acid-enhanced liver MRI since the previous Forum held in 2013.MethodsTwo main themes in liver MRI were considered in detail at the Forum: the use of gadoxetic acid for contrast-enhanced MRI in patients with liver cirrhosis and the technical performance of gadoxetic acid-enhanced liver MRI, both opportunities and challenges. This article summarises the expert presentations and the delegate voting on consensus statements discussed at the Forum.Results and conclusionsIt was concluded that gadoxetic acid-enhanced MRI has higher sensitivity for the diagnosis of hepatocellular carcinoma (HCC), when compared with multidetector CT, by utilising features of hyperenhancement in the arterial phase and hypointensity in the hepatobiliary phase (HBP). Recent HCC management guidelines recognise an increasing role for gadoxetic acid-enhanced MRI in early diagnosis and monitoring post-resection. Additional research is needed to define the role of HBP in predicting microvascular invasion, to better define washout during the transitional phase in gadoxetic acid-enhanced MRI for HCC diagnosis, and to reduce the artefacts encountered in the arterial phase. Technical developments are being directed to shortening the MRI protocol for reducing time and patient discomfort and toward utilising faster imaging and non-Cartesian free-breathing approaches that have the potential to improve multiphasic dynamic imaging.Key points• Gadoxetic acid-enhanced MRI provides higher diagnostic sensitivity than CT for diagnosing HCC. • Gadoxetic acid-enhanced MRI has roles in early-HCC diagnosis and monitoring post-resection response. • Faster imaging and free-breathing approaches have potential to improve multiphasic dynamic imaging
    corecore