106 research outputs found
Recommended from our members
A new generation of 99.999% enriched 28Si single crystals for the determination of Avogadro's constant
A metrological challenge is currently underway to replace the present definition of the kilogram. One prerequisite for this is that the Avogadro constant, NA, which defines the number of atoms in a mole, needs to be determined with a relative uncertainty of better than 2 × 10−8. The method applied in this case is based on the x-ray crystal density experiment using silicon crystals. The first attempt, in which silicon of natural isotopic composition was used, failed. The solution chosen subsequently was the usage of silicon highly enriched in 28Si from Russia. First, this paper reviews previous efforts from the very first beginnings to an international collaboration with the goal of producing a 28Si single crystal with a mass of 5 kg, an enrichment greater than 0.9999 and of sufficient chemical purity. Then the paper describes the activities of a follow-up project, conducted by PTB, to produce a new generation of highly enriched silicon in order to demonstrate the quasi-industrial and reliable production of more than 12 kg of the 28Si material with enrichments of five nines. The intention of this project is also to show the availability of 28Si single crystals as a guarantee for the future realisation of the redefined kilogram
Improved measurement results for the Avogadro constant using a 28Si-enriched crystal
New results are reported from an ongoing international research effort to
accurately determine the Avogadro constant by counting the atoms in an
isotopically enriched silicon crystal. The surfaces of two 28Si-enriched
spheres were decontaminated and reworked in order to produce an outer surface
without metal contamination and improved sphericity. New measurements were then
made on these two reconditioned spheres using improved methods and apparatuses.
When combined with other recently refined parameter measurements, the Avogadro
constant derived from these new results has a value of mol. The X-ray crystal density method has thus achieved
the target relative standard uncertainty of necessary for
the realization of the definition of the new kilogram.Comment: postprint, 22 page, 3 figures, 14 table
Au-Sn bonding metallurgy of TAB contacts and its influence on the Kirkendall effect in the ternary Cu-Au-Sn system
- …
