200 research outputs found
Results from the first use of low radioactivity argon in a dark matter search
Liquid argon is a bright scintillator with potent particle identification
properties, making it an attractive target for direct-detection dark matter
searches. The DarkSide-50 dark matter search here reports the first WIMP search
results obtained using a target of low-radioactivity argon. DarkSide-50 is a
dark matter detector, using two-phase liquid argon time projection chamber,
located at the Laboratori Nazionali del Gran Sasso. The underground argon is
shown to contain Ar-39 at a level reduced by a factor (1.4 +- 0.2) x 10^3
relative to atmospheric argon. We report a background-free null result from
(2616 +- 43) kg d of data, accumulated over 70.9 live-days. When combined with
our previous search using an atmospheric argon, the 90 % C.L. upper limit on
the WIMP-nucleon spin-independent cross section based on zero events found in
the WIMP search regions, is 2.0 x 10^-44 cm^2 (8.6 x 10^-44 cm^2, 8.0 x 10^-43
cm^2) for a WIMP mass of 100 GeV/c^2 (1 TeV/c^2 , 10 TeV/c^2).Comment: Accepted by Phys. Rev.
The Relationship Between the Extent of Indentation and Impact Damage in Carbon-Fibre Reinforced-Plastic Composites after a Low-Velocity Impact
The present paper investigates the low-velocity impact behaviour of carbon-fibre reinforced-plastic (CFRP) composite panels and the damage incurred when they are subjected to a single impact. The relationship between the depth of permanent surface indentation that results and the associated area of interlaminar delamination damage is investigated for two different thicknesses of composite panels. In particular, the delamination damage area increases with impact energy for both thicknesses of composite panel that were studied. Likewise, the indentation depth also increases with increasing impact energy, again for both thicknesses of CFRP panels. It is shown that the indentation depth, at the centre of the indentation, may be used to provide an indication of the extent of delamination damage within the CFRP panel after impact. Indeed, from plotting the indentation depth versus the interlaminar delamination normalised by the thickness of the panel area there is shown to be a unique ‘master’ relationship, with a positive intercept indicating that the indentation damage seems to result before delamination damage initiates. Thus, for both thicknesses of CFRP panels, it is suggested that the indentation process is a precursor to interlaminar delamination damage
Albert Pierrepoint and the cultural persona of the twentieth-century hangman
Albert Pierrepoint was Britain’s most famous 20th-century hangman. This article utilises diverse sources in order to chart his public representation, or cultural persona, as hangman from his rise to prominence in the mid-1940s to his portrayal in the biopic Pierrepoint(2005). It argues that Pierrepoint exercised agency in shaping this persona through publishing his autobiography and engagement with the media, although there were also representations that he did not influence. In particular, it explores three iterations of his cultural persona – the Professional Hangman, the Reformed Hangman and the Haunted Hangman. Each of these built on and reworked historical antecedents and also communicated wider understandings and contested meanings in relation to capital punishment. As a hangman who remained in the public eye after the death penalty in Britain was abolished, Pierrepoint was an important, authentic link to the practice of execution and a symbolic figure in debates over reintroduction. In the 21st century, he was portrayed as a victim of the ‘secondary trauma’ of the death penalty, which resonated with worldwide campaigns
for abolition
Modelling the effects of patch-plug configuration on the impact performance of patch-repaired composite laminates
Systematic evaluation of immune regulation and modulation
Cancer immunotherapies are showing promising clinical results in a variety of malignancies. Monitoring the immune as well as the tumor response following these therapies has led to significant advancements in the field. Moreover, the identification and assessment of both predictive and prognostic biomarkers has become a key component to advancing these therapies. Thus, it is critical to develop systematic approaches to monitor the immune response and to interpret the data obtained from these assays. In order to address these issues and make recommendations to the field, the Society for Immunotherapy of Cancer reconvened the Immune Biomarkers Task Force. As a part of this Task Force, Working Group 3 (WG3) consisting of multidisciplinary experts from industry, academia, and government focused on the systematic assessment of immune regulation and modulation. In this review, the tumor microenvironment, microbiome, bone marrow, and adoptively transferred T cells will be used as examples to discuss the type and timing of sample collection. In addition, potential types of measurements, assays, and analyses will be discussed for each sample. Specifically, these recommendations will focus on the unique collection and assay requirements for the analysis of various samples as well as the high-throughput assays to evaluate potential biomarkers
Modelling the effects of patch-plug configuration on the impact performance of patch-repaired composite laminates
The patch-plug configuration has been widely used to repair composite structures and restore the structural integrity of damaged composites. In the present research, single-sided CFRP patch-repaired panels, with different patch-plug configurations, are prepared. This is where a circular-shaped damaged area has been removed and a CFRP patch has been adhesively-bonded onto the panel. In some cases, a CFRP plug is inserted into the hole, caused by removal of the damaged area, before the patch is applied. Such patch-repaired panels, and the pristine CFRP panel, are subjected to a low-velocity impact at an energy of 7.5 J. These impacted pristine and repaired panels are then examined using ultrasonic C-scan and optical microscopy to inspect the impact-associated permanent indentation, interlaminar and intralaminar damage. A finite element analysis (FEA) model, which significantly extends a previously validated elastic-plastic (E-P) numerical damage model, has been developed to predict the impact behaviour of the pristine CFRP panel and the various designs of patch-repaired CFRP panels. The comparison between the experimental and numerical results for all the studied cases shows the maximum deviations for the loading response and the damage area are 12% and 15%, respectively. The good agreement between the experimentally-measured impact properties and those predicted using the numerical model demonstrates that the model is a useful design tool
Autophagy acts as a brake on obesity-related fibrosis by controlling purine nucleoside signalling
A hallmark of obesity is a pathological expansion of white adipose tissue (WAT), accompanied by marked tissue dysfunction and fibrosis. Autophagy promotes adipocyte differentiation and lipid homeostasis, but its role in obese adipocytes and adipose tissue dysfunction remains incompletely understood. Using a mouse model, we demonstrate that autophagy is a key tissue-specific regulator of WAT remodelling in diet-induced obesity. Importantly, loss of adipocyte autophagy substantially exacerbates pericellular fibrosis in visceral WAT. Change in WAT architecture correlates with increased infiltration of macrophages with tissue-reparative, fibrotic features. We uncover that autophagy restrains purine nucleoside metabolism in obese adipocytes. This ultimately leads to a reduced release of the purine catabolites xanthine and hypoxanthine. Purines signal cell-extrinsically for fibrosis by driving macrophage polarisation towards a tissue reparative phenotype. Our findings in mice reveal a role for adipocyte autophagy in regulating tissue purine nucleoside metabolism, thereby limiting obesity-associated fibrosis and maintaining the functional integrity of visceral WAT. Purine signals may serve as a critical balance checkpoint and therapeutic target in fibrotic diseases
Changes in cognitive domains during three years in patients with Alzheimer's disease treated with donepezil
<p>Abstract</p> <p>Background</p> <p>The objective was to identify separate cognitive domains in the standard assessment tools (MMSE, ADAS-Cog) and analyze the process of decline within domains during three years in Alzheimer's disease (AD) patients with donepezil treatment.</p> <p>Method</p> <p>AD patients (n = 421) were recruited from a clinical multi-centre study program in Sweden. Patients were assessed every six months during three years. All patients received donepezil starting directly after study entry. After dropouts, 158 patients remained for analyses over three years. Data for the other patients were analysed until they dropped out (4 groups based on length in study).</p> <p>Results</p> <p>Factor analyses of all items suggested that there were three intercorrelated factors: a General, a Memory and a Spatial factor for which we constructed corresponding domains. Overall there was a cognitive improvement at six months followed by a linear drop over time for the three domains. Some group and domain differences were identified. Patients who remained longer in the study had better initial performance and a slower deterioration rate. The early dropouts showed no improvement at six months and many dropped out due to side effects. The other groups displayed a performance improvement at six months that was less pronounced in the Memory domain. Before dropping out, deterioration accelerated, particularly in the Spatial domain.</p> <p>Conclusion</p> <p>The course of illness in the three domains was heterogeneous among the patients. We were not able to identify any clinically relevant correlates of this heterogeneity. As an aid we constructed three algorithms corresponding to the cognitive domains, which can be used to characterize patients initially, identify rapid decliners and follow the course of the disease.</p
Measurement of the Generalized Polarizabilities of the Proton in Virtual Compton Scattering
We propose to conduct a measurement of the Virtual Compton Scattering
reaction in Hall C that will allow the precise extraction of the two scalar
Generalized Polarizabilities (GPs) of the proton in the region of
to . The Generalized Polarizabilities
are fundamental properties of the proton, that characterize the system's
response to an external electromagnetic (EM) field. They describe how easily
the charge and magnetization distributions inside the system are distorted by
the EM field, mapping out the resulting deformation of the densities in the
proton. As such, they reveal unique information regarding the underlying system
dynamics and provide a key for decoding the proton structure in terms of the
theory of the strong interaction that binds its elementary quark and gluon
constituents together. Recent measurements of the proton GPs have challenged
the theoretical predictions, particularly in regard to the electric
polarizability. The magnetic GP, on the other hand, can provide valuable
insight to the competing paramagnetic and diamagnetic contributions in the
proton, but it is poorly known within the region where the interplay of these
processes is very dynamic and rapidly changing.The unique capabilities of Hall
C, namely the high resolution of the spectrometers combined with the ability to
place the spectrometers in small angles, will allow to pin down the dynamic
signature of the GPs through high precision measurements combined with a fine
mapping as a function of . The experimental setup utilizes standard Hall C
equipment, as was previously employed in the VCS-I (E12-15-001) experiment,
namely the HMS and SHMS spectrometers and a 10 cm liquid hydrogen target. A
total of 59 days of unpolarized 75 electron beam with energy of 1100
MeV (6 days) and 2200 MeV (53 days) is requested for this experiment
- …
