559 research outputs found
Real Assets, Liquidation Value and Choice of Financing
We use real estate firms to examine how asset liquidation values influence a firm’s financing choice, because the productivity and quality of each asset is observable and potential measures of an asset’s liquidation value are easier to ascertain ex ante. We show that compared to firms that issue equity, firms that issue debt have higher asset quality. The effect of their expected asset liquidation value is significant, even after we control for other factors that influence financing decisions. For firms whose assets’ quality is not easily observable, we find that firms’ financing choices depend heavily on conditions in the overall real estate market
HIV Integrase Inhibitors Block Replication of Alpha-, Beta-, and Gammaherpesviruses
ABSTRACT The catalytic site of the HIV integrase is contained within an RNase H-like fold, and numerous drugs have been developed that bind to this site and inhibit its activity. Herpes simplex virus (HSV) encodes two proteins with potential RNase H-like folds, the infected cell protein 8 (ICP8) DNA-binding protein, which is necessary for viral DNA replication and exhibits recombinase activity in vitro, and the viral terminase, which is essential for viral DNA cleavage and packaging. Therefore, we hypothesized that HIV integrase inhibitors might also inhibit HSV replication by targeting ICP8 and/or the terminase. To test this, we evaluated the effect of 118-D-24, a potent HIV integrase inhibitor, on HSV replication. We found that 118-D-24 inhibited HSV-1 replication in cell culture at submillimolar concentrations. To identify more potent inhibitors of HSV replication, we screened a panel of integrase inhibitors, and one compound with greater anti-HSV-1 activity, XZ45, was chosen for further analysis. XZ45 significantly inhibited HSV-1 and HSV-2 replication in different cell types, with 50% inhibitory concentrations that were approximately 1 µM, but exhibited low cytotoxicity, with a 50% cytotoxic concentration greater than 500 µM. XZ45 blocked HSV viral DNA replication and late gene expression. XZ45 also inhibited viral recombination in infected cells and ICP8 recombinase activity in vitro. Furthermore, XZ45 inhibited human cytomegalovirus replication and induction of Kaposi’s sarcoma herpesvirus from latent infection. Our results argue that inhibitors of enzymes with RNase H-like folds may represent a general antiviral strategy, which is useful not only against HIV but also against herpesviruses
Identification of a novel distal regulatory element of the human Neuroglobin gene by the chromosome conformation capture approach
Neuroglobin (NGB) is predominantly expressed in the brain and retina. Studies suggest that NGB exerts protective effects to neuronal cells and is implicated in reducing the severity of stroke and Alzheimer's disease. However, little is known about the mechanisms which regulate the cell type-specific expression of the gene. In this study, we hypothesized that distal regulatory elements (DREs) are involved in optimal expression of the NGB gene. By chromosome conformation capture we identified two novel DREs located -70 kb upstream and +100 kb downstream from the NGB gene. ENCODE database showed the presence of DNaseI hypersensitive and transcription factors binding sites in these regions. Further analyses using luciferase reporters and chromatin immunoprecipitation suggested that the -70 kb region upstream of the NGB gene contained a neuronalspecific enhancer and GATA transcription factor binding sites. Knockdown of GATA-2 caused NGB expression to drop dramatically, indicating GATA-2 as an essential transcription factor for the activation of NGB expression. The crucial role of the DRE in NGB expression activation was further confirmed by the drop in NGB level after CRISPR-mediated deletion of the DRE. Taken together, we show that the NGB gene is regulated by a cell type-specific loop formed between its promoter and the novel DRE
Crystal aggregates record the pre-eruptive flow field in the volcanic conduit at Kilauea, Hawaii
© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in DiBenedetto, M., Qin, Z., & Suckale, J. Crystal aggregates record the pre-eruptive flow field in the volcanic conduit at Kilauea, Hawaii. Science Advances, 6(49), (2020): eabd4850, doi:10.1126/sciadv.abd4850.Developing reliable, quantitative conduit models that capture the physical processes governing eruptions is hindered by our inability to observe conduit flow directly. The closest we get to direct evidence is testimony imprinted on individual crystals or bubbles in the conduit and preserved by quenching during the eruption. For example, small crystal aggregates in products of the 1959 eruption of Kīlauea Iki, Hawaii contain overgrown olivines separated by large, hydrodynamically unfavorable angles. The common occurrence of these aggregates calls for a flow mechanism that creates this crystal misorientation. Here, we show that the observed aggregates are the result of exposure to a steady wave field in the conduit through a customized, process-based model at the scale of individual crystals. We use this model to infer quantitative attributes of the flow at the time of aggregate formation; notably, the formation of misoriented aggregates is only reproduced in bidirectional, not unidirectional, conduit flow.M.D. acknowledges support the Stanford Gerald J. Lieberman Fellowship and the Postdoctoral Scholarship from Woods Hole Oceanographic Institution
The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis.
Ferroptosis is a form of regulated cell death that is caused by the iron-dependent peroxidation of lipids1,2. The glutathione-dependent lipid hydroperoxidase glutathione peroxidase 4 (GPX4) prevents ferroptosis by converting lipid hydroperoxides into non-toxic lipid alcohols3,4. Ferroptosis has previously been implicated in the cell death that underlies several degenerative conditions2, and induction of ferroptosis by the inhibition of GPX4 has emerged as a therapeutic strategy to trigger cancer cell death5. However, sensitivity to GPX4 inhibitors varies greatly across cancer cell lines6, which suggests that additional factors govern resistance to ferroptosis. Here, using a synthetic lethal CRISPR-Cas9 screen, we identify ferroptosis suppressor protein 1 (FSP1) (previously known as apoptosis-inducing factor mitochondrial 2 (AIFM2)) as a potent ferroptosis-resistance factor. Our data indicate that myristoylation recruits FSP1 to the plasma membrane where it functions as an oxidoreductase that reduces coenzyme Q10 (CoQ) (also known as ubiquinone-10), which acts as a lipophilic radical-trapping antioxidant that halts the propagation of lipid peroxides. We further find that FSP1 expression positively correlates with ferroptosis resistance across hundreds of cancer cell lines, and that FSP1 mediates resistance to ferroptosis in lung cancer cells in culture and in mouse tumour xenografts. Thus, our data identify FSP1 as a key component of a non-mitochondrial CoQ antioxidant system that acts in parallel to the canonical glutathione-based GPX4 pathway. These findings define a ferroptosis suppression pathway and indicate that pharmacological inhibition of FSP1 may provide an effective strategy to sensitize cancer cells to ferroptosis-inducing chemotherapeutic agents
BCAA catabolism in brown fat controls energy homeostasis through SLC25A44.
Branched-chain amino acid (BCAA; valine, leucine and isoleucine) supplementation is often beneficial to energy expenditure; however, increased circulating levels of BCAA are linked to obesity and diabetes. The mechanisms of this paradox remain unclear. Here we report that, on cold exposure, brown adipose tissue (BAT) actively utilizes BCAA in the mitochondria for thermogenesis and promotes systemic BCAA clearance in mice and humans. In turn, a BAT-specific defect in BCAA catabolism attenuates systemic BCAA clearance, BAT fuel oxidation and thermogenesis, leading to diet-induced obesity and glucose intolerance. Mechanistically, active BCAA catabolism in BAT is mediated by SLC25A44, which transports BCAAs into mitochondria. Our results suggest that BAT serves as a key metabolic filter that controls BCAA clearance via SLC25A44, thereby contributing to the improvement of metabolic health
On logarithmically optimal exact simulation of max-stable and related random fields on a compact set
Emitter-Active Shell in NaYF<sub>4</sub>:Yb,Er/NaYF<sub>4</sub>:Er Upconversion Nanoparticles for Enhanced Energy Transfer in Photodynamic Therapy
To realize the potential of near-infrared (NIR) upconversion nanosensitizers for photodynamic therapy of cancer, upconversion luminescence and energy transfer (ET) efficiency from emitter donors to photosensitizer acceptors need to be improved. In the current work, upconversion nanoparticles (UCNPs) with a core/emitter-active shell structure were constructed to enhance not only the upconversion emission but also the ET from the nanoparticles to surface-anchored photosensitizers. The emitter was doped into the shell to bridge the migration of upconverted energy to the surface. NaYF4:Yb,Er/NaYF4:Er UCNPs and rose bengal (RB) photosensitizer were employed as an example. The upconversion emission was lifted by up to ∼81 times of the core counterpart. The bridge effect of the emitter-doped shell was obvious for the constructed nanophotosensitizer. The emission of the RB photosensitizer was up to ∼36 times that of the core counterpart. The NaYF4:Yb,Er/NaYF4:Er UCNPs also endow the RB photosensitizers with the most efficient reactive oxygen species production capability under NIR irradiation. In vitro photodynamic tests on glioma cells were conducted to validate the efficacy of the NaYF4:Yb,Er/NaYF4:Er/RB agent. Therefore, this work can facilitate the development of ET-based upconversion nanosystems
Convexification Numerical Method for a Coefficient Inverse Problem for the Riemannian Radiative Transfer Equation
The first globally convergent numerical method for a Coefficient Inverse
Problem (CIP) for the Riemannian Radiative Transfer Equation (RRTE) is
constructed. This is a version of the so-called \textquotedblleft
convexification" principle, which has been pursued by this research group for a
number of years for some other CIPs for PDEs. Those PDEs are significantly
different from RRTE. The presence of the Carleman Weight Function (CWF) in the
numerical scheme is the key element of the convexification. CWF is the
function, which is involved as the weight function in the Carleman estimate for
the corresponding PDE operator. Convergence analysis is presented along with
the results of numerical experiments, which confirm the theory. RRTE governs
the propagation of photons in the diffuse medium in the case when they
propagate along geodesic lines between their collisions. Geodesic lines are
generated by the spatially variable dielectric constant of the medium
Coupling and stacking order of ReS2 atomic layers revealed by ultralow-frequency Raman spectroscopy
We investigate the ultralow-frequency Raman response of atomically thin ReS2,
a special type of two-dimensional (2D) semiconductors with unique distorted 1T
structure. Bilayer and few-layer ReS2 exhibit rich Raman spectra at frequencies
below 50 cm-1, where a panoply of interlayer shear and breathing modes are
observed. The emergence of these interlayer phonon modes indicate that the ReS2
layers are coupled and stacked orderly, in contrast to the general belief that
the ReS2 layers are decoupled from one another. While the interlayer breathing
modes can be described by a linear chain model as in other 2D layered crystals,
the shear modes exhibit distinctive behavior due to the in-plane lattice
distortion. In particular, the two shear modes in bilayer ReS2 are
non-degenerate and well separated in the Raman spectrum, in contrast to the
doubly degenerate shear modes in other 2D materials. By carrying out
comprehensive first-principles calculations, we can account for the frequency
and Raman intensity of the interlayer modes, and determine the stacking order
in bilayer ReS2
- …
