17,644 research outputs found

    Photoproduction of Pentaquark Θ+\Theta^+ and Chiral Symmetry Restoration in Hot and Dense Medium

    Full text link
    The photoproduction rate of pentaquark Θ+\Theta^+ is calculated in a hot and dense medium. At high temperature and density, due to the restoration of chiral symmetry, photoproduction energy threshold is increased. Above the thresold the production cross section is strongly enhanced.Comment: 5 pages, 3 figure

    Large-Alphabet Encoding Schemes for Floodlight Quantum Key Distribution

    Get PDF
    Floodlight quantum key distribution (FL-QKD) uses binary phase-shift keying (BPSK) of multiple optical modes to achieve Gbps secret-key rates (SKRs) at metropolitan-area distances. We show that FL-QKD's SKR can be doubled by using 32-ary PSK.Comment: 2 pages, 2 figure

    Entanglement-Enhanced Lidars for Simultaneous Range and Velocity Measurements

    Full text link
    Lidar is a well known optical technology for measuring a target's range and radial velocity. We describe two lidar systems that use entanglement between transmitted signals and retained idlers to obtain significant quantum enhancements in simultaneous measurement of these parameters. The first entanglement-enhanced lidar circumvents the Arthurs-Kelly uncertainty relation for simultaneous measurement of range and radial velocity from detection of a single photon returned from the target. This performance presumes there is no extraneous (background) light, but is robust to the roundtrip loss incurred by the signal photons. The second entanglement-enhanced lidar---which requires a lossless, noiseless environment---realizes Heisenberg-limited accuracies for both its range and radial-velocity measurements, i.e., their root-mean-square estimation errors are both proportional to 1/M1/M when MM signal photons are transmitted. These two lidars derive their entanglement-based enhancements from use of a unitary transformation that takes a signal-idler photon pair with frequencies ωS\omega_S and ωI\omega_I and converts it to a signal-idler photon pair whose frequencies are (ωS+ωI)/2(\omega_S + \omega_I)/2 and ωSωI\omega_S-\omega_I. Insight into how this transformation provides its benefits is provided through an analogy to superdense coding.Comment: 7 pages, 3 figure

    Distributed Quantum Sensing Using Continuous-Variable Multipartite Entanglement

    Full text link
    Distributed quantum sensing uses quantum correlations between multiple sensors to enhance the measurement of unknown parameters beyond the limits of unentangled systems. We describe a sensing scheme that uses continuous-variable multipartite entanglement to enhance distributed sensing of field-quadrature displacement. By dividing a squeezed-vacuum state between multiple homodyne-sensor nodes using a lossless beam-splitter array, we obtain a root-mean-square (rms) estimation error that scales inversely with the number of nodes (Heisenberg scaling), whereas the rms error of a distributed sensor that does not exploit entanglement is inversely proportional to the square root of number of nodes (standard quantum limit scaling). Our sensor's scaling advantage is destroyed by loss, but it nevertheless retains an rms-error advantage in settings in which there is moderate loss. Our distributed sensing scheme can be used to calibrate continuous-variable quantum key distribution networks, to perform multiple-sensor cold-atom temperature measurements, and to do distributed interferometric phase sensing.Comment: 7 pages, 3 figure

    Adversarial Convolutional Networks with Weak Domain-Transfer for Multi-sequence Cardiac MR Images Segmentation

    Get PDF
    Analysis and modeling of the ventricles and myocardium are important in the diagnostic and treatment of heart diseases. Manual delineation of those tissues in cardiac MR (CMR) scans is laborious and time-consuming. The ambiguity of the boundaries makes the segmentation task rather challenging. Furthermore, the annotations on some modalities such as Late Gadolinium Enhancement (LGE) MRI, are often not available. We propose an end-to-end segmentation framework based on convolutional neural network (CNN) and adversarial learning. A dilated residual U-shape network is used as a segmentor to generate the prediction mask; meanwhile, a CNN is utilized as a discriminator model to judge the segmentation quality. To leverage the available annotations across modalities per patient, a new loss function named weak domain-transfer loss is introduced to the pipeline. The proposed model is evaluated on the public dataset released by the challenge organizer in MICCAI 2019, which consists of 45 sets of multi-sequence CMR images. We demonstrate that the proposed adversarial pipeline outperforms baseline deep-learning methods.Comment: 9 pages, 4 figures, conferenc

    Combined High Power and High Frequency Operation of InGaAsP/InP Lasers at 1.3μm

    Get PDF
    A simultaneous operation of a semiconductor laser at high power and high speed was demonstrated in a buried crescent laser on a P-InP substrate. In a cavity length of 300μm, a maximum CW power of 130mW at room temperature was obtained in a junction-up mounting configuration. A 3dB bandwidth in excess of 12GHz at an output power of 52mW was observed

    Low-momentum Pion Enhancement Induced by Chiral Symmetry Restoration

    Full text link
    The thermal and nonthermal pion production by sigma decay and its relation with chiral symmetry restoration in a hot and dense matter are investigated. The nonthermal decay into pions of sigma mesons which are popularly produced in chiral symmetric phase leads to a low-momentum pion enhancement as a possible signature of chiral phase transition at finite temperature and density.Comment: 3 pages, 2 figure

    Double-active-layer index-guided InGaAsP-InP laser diode

    Get PDF
    A buried crescent InGaAsP-InP laser with two active layers was fabricated to study the temperature behavior of the double-carrier-confinement structure. An anomalously high characteristic temperature T0 was measured, and optical switching behavior was observed. A mode analysis and numerical calculation using a rate equation approach explained qualitatively very well the experimental results. It was revealed that both the Auger recombination in this special double-active-layer configuration and the temperature-dependent leakage current, which leads to uniform carrier distribution in both active regions, are essential to increase T0
    corecore