38,842 research outputs found

    A first-principles investigation on the effects of magnetism on the Bain transformation of α\alpha-phase FeNi systems

    Full text link
    The effects of magnetism on the Bain transformation of α\alpha-phase FeNi systems are investigated by using the full potential linearized augmented plane wave (FLAPW) method based on the generalized gradient approximation (GGA). We found that Ni impurity in bcc Fe increases the lattice constant in ferromagnetic (FM) states, but not in the nonmagnetic (NM) states. The shear modulus GG and Young's modulus EE of bcc Fe are also increased by raising the concentration of nickel. All the compositions considered show high shear anisotropy and the ratio of the bulk to shear modulus is greater than 1.75 implying ductility. The mean sound velocities in the [100][100] directions are greater than in the [110][110] directions. The Bain transformation, which is a component of martensitic transformation, has also been studied to reveal that Nix_{x}Fe1x_{1-x} alloys are elastically unstable in the NM states, but not so in the FM states. The electronic structures explain these results in terms of the density of states at the Fermi level. It is evident that magnetism cannot be neglected when dealing with the Bain transformation in iron and its alloys.Comment: Accepted for publications in J. Appl. Phys. (2012

    First-principles investigation of magnetism and electronic structures of substitutional 3d3d transition-metal impurities in bcc Fe

    Get PDF
    The magnetic and electronic structures of 3d3d impurity atoms from Sc to Zn in ferromagnetic body-centered cubic iron are investigated using the all-electron full-potential linearized augmented plane-wave method based on the generalized gradient approximation (GGA). We found that in general, the GGA results are closer to the experimental values than those of the local spin density approximation. The calculated formation enthalpy data indicate the importance of a systematic study on the ternary Fe-C-XX systems rather than the binary Fe-XX systems, in steel design. The lattice parameters are optimized and the conditions for spin polarization at the impurity sites are discussed in terms of the local Stoner model. Our calculations, which are consistent with previous work, imply that the local spin-polarizations at Sc, Ti, V, Cu, and Zn are induced by the host Fe atoms. The early transition-metal atoms couple antiferromagnetically, while the late transition-metal atoms couple ferromagnetically, to the host Fe atoms. The calculated total magnetization (MM) of bcc Fe is reduced by impurity elements from Sc to Cr as a result of the antiferromagnetic interaction, with the opposite effect for solutes which couple ferromagnetically. The changes in MM are attributed to nearest neighbor interactions, mostly between the impurity and host atoms. The atom averaged magnetic moment is shown to follow generally the well-known Slater-Pauling curve, but our results do not follow the linearity of the Slater-Pauling curve. We attribute this discrepancy to the weak ferromagnetic nature of bcc Fe. The calculated Fermi contact hyperfine fields follow the trend of the local magnetic moments. The effect of spin-orbit coupling is found not to be significant although it comes into prominence at locations far from the impurity sites.Comment: 26 pages, 11 figure

    The support of the logarithmic equilibrium measure on sets of revolution in R3\R^3

    Full text link
    For surfaces of revolution BB in R3\R^3, we investigate the limit distribution of minimum energy point masses on BB that interact according to the logarithmic potential log(1/r)\log (1/r), where rr is the Euclidean distance between points. We show that such limit distributions are supported only on the ``out-most'' portion of the surface (e.g., for a torus, only on that portion of the surface with positive curvature). Our analysis proceeds by reducing the problem to the complex plane where a non-singular potential kernel arises whose level lines are ellipses

    A new superconducting open-framework allotrope of silicon at ambient pressure

    Full text link
    Diamond Si is a semiconductor with an indirect band gap that is the basis of modern semiconductor technology. Although many metastable forms of Si were observed using diamond anvil cells for compression and chemical precursors for synthesis, no metallic phase at ambient conditions has been reported thus far. Here we report the prediction of pure metallic Si allotropes with open channels at ambient pressure, unlike a cubic diamond structure in covalent bonding networks. The metallic phase termed P6/m-Si6 can be obtained by removing Na after pressure release from a novel Na-Si clathrate called P6/m-NaSi6, which is discovered through first-principles study at high pressure. We confirm that both P6/m-NaSi6 and P6/m-Si6 are stable and superconducting with the critical temperatures of about 13 and 12 K at ambient pressure, respectively. The discovery of new Na-Si and Si clathrate structures presents the possibility of exploring new exotic allotropes useful for Si-based devices

    Direct solar-pumped iodine laser amplifier

    Get PDF
    A XeCl laser which was developed earlier for an iodine laser oscillator was modified in order to increase the output pulse energy of XeCl laser so that the iodine laser output energy could be increased. The electrical circuit of the XeCl laser was changed from a simple capacitor discharge circuit of the XeCl laser to a Marx system. Because of this improvement the output energy from the XeCl laser was increased from 60 mj to 80 mj. Subsequently, iodine laser output energy was increased from 100 mj to 3 mj. On the other hand, the energy storage capability and amplification characteristics of the Vortek solar simulator-pumped amplifier was calculated expecting the calculated amplification factor is about 2 and the energy extraction efficiency is 26 percent due to the very low input energy density to the amplifier. As a result of an improved kinetic modeling for the iodine solar simulator pumped power amplifier, it is found that the I-2 along the axis of the tube affects seriously the gain profile. For the gas i-C3F7I at the higher pressures, the gain will decrease due to the I-2 as the pumping intensity increases, and at these higher pressures an increase in flow velocity will increase the gain

    A New Phosphorus Allotrope with Direct Band Gap and High Mobility

    Full text link
    Based on ab initio evolutionary crystal structure search computation, we report a new phase of phosphorus called green phosphorus ({\lambda}-P), which exhibits the direct band gaps ranging from 0.7 to 2.4 eV and the strong anisotropy in optical and transport properties. Free energy calculations show that a single-layer form, termed green phosphorene, is energetically more stable than blue phosphorene and a phase transition from black to green phosphorene can occur at temperatures above 87 K. Due to its buckled structure, green phosphorene can be synthesized on corrugated metal surfaces rather than clean surfaces

    Mean-field diffusivities in passive scalar and magnetic transport in irrotational flows

    Full text link
    Certain aspects of the mean-field theory of turbulent passive scalar transport and of mean-field electrodynamics are considered with particular emphasis on aspects of compressible fluids. It is demonstrated that the total mean-field diffusivity for passive scalar transport in a compressible flow may well be smaller than the molecular diffusivity. This is in full analogy to an old finding regarding the magnetic mean-field diffusivity in an electrically conducting turbulently moving compressible fluid. These phenomena occur if the irrotational part of the motion dominates the vortical part, the P\`eclet or magnetic Reynolds number is not too large, and, in addition, the variation of the flow pattern is slow. For both the passive scalar and the magnetic cases several further analytical results on mean-field diffusivities and related quantities found within the second-order correlation approximation are presented, as well as numerical results obtained by the test-field method, which applies independently of this approximation. Particular attention is paid to non-local and non-instantaneous connections between the turbulence-caused terms and the mean fields. Two examples of irrotational flows, in which interesting phenomena in the above sense occur, are investigated in detail. In particular, it is demonstrated that the decay of a mean scalar in a compressible fluid under the influence of these flows can be much slower than without any flow, and can be strongly influenced by the so-called memory effect, that is, the fact that the relevant mean-field coefficients depend on the decay rates themselves.Comment: 13 pages, 10 figures, published on PR
    corecore