57,045 research outputs found
Fibre DFB lasers in a 4x10 Gbit/s WDM link with a single sinc-sampled fibre grating dispersion compensator
WDM transmission and dispersion compensation at 40 Gbit/s over 200 km standard fibre is demonstrated on a 100 GHz grid using four high power single-polarisation single-sided output DFB fibre laser based transmitters and a single 4 channel WDM chirped fibre Bragg grating dispersion compensator
Multi-aspect, robust, and memory exclusive guest os fingerprinting
Precise fingerprinting of an operating system (OS) is critical to many security and forensics applications in the cloud, such as virtual machine (VM) introspection, penetration testing, guest OS administration, kernel dump analysis, and memory forensics. The existing OS fingerprinting techniques primarily inspect network packets or CPU states, and they all fall short in precision and usability. As the physical memory of a VM always exists in all these applications, in this article, we present OS-Sommelier+, a multi-aspect, memory exclusive approach for precise and robust guest OS fingerprinting in the cloud. It works as follows: given a physical memory dump of a guest OS, OS-Sommelier+ first uses a code hash based approach from kernel code aspect to determine the guest OS version. If code hash approach fails, OS-Sommelier+ then uses a kernel data signature based approach from kernel data aspect to determine the version. We have implemented a prototype system, and tested it with a number of Linux kernels. Our evaluation results show that the code hash approach is faster but can only fingerprint the known kernels, and data signature approach complements the code signature approach and can fingerprint even unknown kernels
Dynamic characteristics and processing of fillers in polyurethane elastomers for vibration damping applications
Polyurethane elastomers have the potential of being used to reduce vibrational noise in many engineering applications. The performance of the elastomer is directly related to matching the nature of the mechanical loss characteristics to the frequency and temperature dependence of the source of the vibration. Materials with a broad frequency response and good mechanical properties are desirable for situations were load bearing and isolation becomes an issue. Because automobile, and other related vehicles operate over a broad temperature range, it is desirable for the damping characteristics of the elastomer to ideally be independent of temperature and frequency. In practice, this is not possible and the creation of materials with a broad spectrum response is desirable. In this paper, the effects of various fillers on the breadth and temperature dependence of the vibration damping characteristics of a filled and crosslinked polyurethane elastomer are explored. The fillers studied are wollastonite, barium sulphate and talc. These materials have different shapes, sizes and surface chemistry and undergo different types of interaction with the matrix. The vibration damping characteristics were further varied by the use of a crosslinking agent. Data presented on the rheological characteristics indicate the strength of the filler-polyol interactions. Dielectric relaxation and dynamic mechanical thermal analysis demonstrate the way in which changes in the type of filler, concentration and amount of crosslinker lead to changes in the location and breadth of the energy dissipation process in these elastomers. The vibration damping characteristics of a selected material are presented to demonstrate the potential of these materials
Integral geometry of complex space forms
We show how Alesker's theory of valuations on manifolds gives rise to an
algebraic picture of the integral geometry of any Riemannian isotropic space.
We then apply this method to give a thorough account of the integral geometry
of the complex space forms, i.e. complex projective space, complex hyperbolic
space and complex euclidean space. In particular, we compute the family of
kinematic formulas for invariant valuations and invariant curvature measures in
these spaces. In addition to new and more efficient framings of the tube
formulas of Gray and the kinematic formulas of Shifrin, this approach yields a
new formula expressing the volumes of the tubes about a totally real
submanifold in terms of its intrinsic Riemannian structure. We also show by
direct calculation that the Lipschitz-Killing valuations stabilize the subspace
of invariant angular curvature measures, suggesting the possibility that a
similar phenomenon holds for all Riemannian manifolds. We conclude with a
number of open questions and conjectures.Comment: 68 pages; minor change
Reflection high-energy electron diffraction studies of the growth of lnAs/Ga_(1-x)In_xSb strained-layer superlattices
We have used reflection high‐energy electron diffraction to study the surface periodicity of the growth front of InAs/GaInSb strained‐layer superlattices (SLSs). We found that the apparent surface lattice spacing reproducibly changed during layers which subsequent x‐ray measurements indicated were coherently strained. Abrupt changes in the measured streak spacings were found to be correlated to changes in the growth flux. The profile of the dynamic streak spacing was found to be reproducible when comparing consecutive periods of a SLSs or different SLSs employing the same shuttering scheme at the InAs/GaInSb interface. Finally, when the interface shuttering scheme was changed, it was found that the dynamic streak separation profile also changed. Large changes in the shuttering scheme led to dramatic differences in the streak separation profile, and small changes in the shuttering scheme led to minor changes in the profile. In both cases, the differences in the surface periodicity profile occurred during the parts of the growth where the incident fluxes differed
Ab-initio GMR and current-induced torques in Au/Cr multilayers
We report on an {\em ab-initio} study of giant magnetoresistance (GMR) and
current-induced-torques (CITs) in Cr/Au multilayers that is based on
non-equilibrium Green's functions and spin density functional theory. We find
substantial GMR due primarily to a spin-dependent resonance centered at the
Cr/Au interface and predict that the CITs are strong enough to switch the
antiferromagnetic order parameter at current-densities times smaller
than typical ferromagnetic metal circuit switching densities.Comment: 8 pages, 6 figure
Determining the strange and antistrange quark distributions of the nucleon
The difference between the strange and antistrange quark distributions,
\delta s(x)=s(x)-\sbar(x), and the combination of light quark sea and strange
quark sea, \Delta (x)=\dbar(x)+\ubar(x)-s(x)-\sbar(x), are originated from
non-perturbative processes, and can be calculated using non-perturbative models
of the nucleon. We report calculations of and using
the meson cloud model. Combining our calculations of with
relatively well known light antiquark distributions obtained from global
analysis of available experimental data, we estimate the total strange sea
distributions of the nucleon.Comment: 4 pages, 3 figures; talk given by F.-G. at QNP0
Surface States of the Topological Insulator Bi_{1-x}Sb_x
We study the electronic surface states of the semiconducting alloy BiSb.
Using a phenomenological tight binding model we show that the Fermi surface of
the 111 surface states encloses an odd number of time reversal invariant
momenta (TRIM) in the surface Brillouin zone confirming that the alloy is a
strong topological insulator. We then develop general arguments which show that
spatial symmetries lead to additional topological structure, and further
constrain the surface band structure. Inversion symmetric crystals have 8 Z_2
"parity invariants", which include the 4 Z_2 invariants due to time reversal.
The extra invariants determine the "surface fermion parity", which specifies
which surface TRIM are enclosed by an odd number of electron or hole pockets.
We provide a simple proof of this result, which provides a direct link between
the surface states and the bulk parity eigenvalues. We then make specific
predictions for the surface state structure for several faces of BiSb. We next
show that mirror invariant band structures are characterized by an integer
"mirror Chern number", n_M. The sign of n_M in the topological insulator phase
of BiSb is related to a previously unexplored Z_2 parameter in the L point k.p
theory of pure Bi, which we refer to as the "mirror chirality", \eta. The value
of \eta predicted by the tight binding model for Bi disagrees with the value
predicted by a more fundamental pseudopotential calculation. This explains a
subtle disagreement between our tight binding surface state calculation and
previous first principles calculations on Bi. This suggests that the tight
binding parameters in the Liu Allen model of Bi need to be reconsidered.
Implications for existing and future ARPES experiments and spin polarized ARPES
experiments will be discussed.Comment: 15 pages, 7 figure
Efficient quantum key distribution over a collective noise channel
We present two efficient quantum key distribution schemes over two different
collective-noise channels. The accepted hypothesis of collective noise is that
photons travel inside a time window small compared to the variation of noise.
Noiseless subspaces are made up of two Bell states and the spatial degree of
freedom is introduced to form two nonorthogonal bases. Although these protocols
resort to entangled states for encoding the key bit, the receiver is only
required to perform single-particle product measurements and there is no basis
mismatch. Moreover, the detection is passive as the receiver does not switch
his measurements between two conjugate measurement bases to get the key.Comment: 6 pages, 1 figure; the revised version of the paper published in
Phys. Rev. A 78, 022321 (2008). Some negligible errors on the error rates of
eavesdropping check are correcte
- …
