10,031 research outputs found

    1.55-μm mode-locked quantum-dot lasers with 300 MHz frequency tuning range

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Appl. Phys. Lett. 106, 031114 (2015) and may be found at https://doi.org/10.1063/1.4906451.Passive mode-locking of two-section quantum-dot mode-locked lasers grown by metalorganic vapor phase epitaxy on InP is reported. 1250-μm long lasers exhibit a wide tuning range of 300 MHz around the fundamental mode-locking frequency of 33.48 GHz. The frequency tuning is achieved by varying the reverse bias of the saturable absorber from 0 to −2.2 V and the gain section current from 90 to 280 mA. 3 dB optical spectra width of 6–7 nm leads to ex-facet optical pulses with full-width half-maximum down to 3.7 ps. Single-section quantum-dot mode-locked lasers show 0.8 ps broad optical pulses after external fiber-based compression. Injection current tuning from 70 to 300 mA leads to 30 MHz frequency tuning.DFG, 43659573, SFB 787: Halbleiter - Nanophotonik: Materialien, Modelle, BauelementeEC/FP7/EU/264687/Postgraduate Research on Photonics as an Enabling Technology/PROPHE

    A Multi-Armed Bandit to Smartly Select a Training Set from Big Medical Data

    Full text link
    With the availability of big medical image data, the selection of an adequate training set is becoming more important to address the heterogeneity of different datasets. Simply including all the data does not only incur high processing costs but can even harm the prediction. We formulate the smart and efficient selection of a training dataset from big medical image data as a multi-armed bandit problem, solved by Thompson sampling. Our method assumes that image features are not available at the time of the selection of the samples, and therefore relies only on meta information associated with the images. Our strategy simultaneously exploits data sources with high chances of yielding useful samples and explores new data regions. For our evaluation, we focus on the application of estimating the age from a brain MRI. Our results on 7,250 subjects from 10 datasets show that our approach leads to higher accuracy while only requiring a fraction of the training data.Comment: MICCAI 2017 Proceeding

    Role of contrast-enhanced ultrasound (CEUS) in paediatric practice: an EFSUMB position statement

    Get PDF
    The use of contrast-enhanced ultrasound (CEUS) in adults is well established in many different areas, with a number of current applications deemed off-label, but the use supported by clinical experience and evidence. Paediatric CEUS is also an off-label application until recently with approval specifically for assessment of focal liver lesions. Nevertheless there is mounting evidence of the usefulness of CEUS in children in many areas, primarily as an imaging technique that reduces exposure to radiation, iodinated contrast medium and the patient-friendly circumstances of ultrasonography. This position statement of the European Federation of Societies in Ultrasound and Medicine (EFSUMB) assesses the current status of CEUS applications in children and makes suggestions for further development of this technique

    Model for SU(3) vacuum degeneracy using light-cone coordinates

    Get PDF
    Working in light-cone coordinates, we study the zero-modes and the vacuum in a 2+1 dimensional SU(3) gauge model. Considering the fields as independent of the tranverse variables, we dimensionally reduce this model to 1+1 dimensions. After introducing an appropriate su(3) basis and gauge conditions, we extract an adjoint field from the model. Quantization of this adjoint field and field equations lead to two constrained and two dynamical zero-modes. We link the dynamical zero-modes to the vacuum by writing down a Schrodinger equation and prove the non-degeneracy of the SU(3) vacuum provided that we neglect the contribution of constrained zero-modes.Comment: 22 pages, 5 figure

    Unoccupied states of individual silver clusters and chains on Ag(111)

    Full text link
    Size-selected silver clusters on Ag(111) were fabricated with the tip of a scanning tunneling microscope. Unoccupied electron resonances give rise to image contrast and spectral features which shift toward the Fermi level with increasing cluster size. Linear assemblies exhibit higher resonance energies than equally sized compact assemblies. Density functional theory calculations reproduce the observed energies and enable an assignment of the resonances to hybridized atomic 5s and 5p orbitals with silver substrate states.Comment: 9 pages, 8 figure

    Tunable sub-luminal propagation of narrowband x-ray pulses

    Get PDF
    Group velocity control is demonstrated for x-ray photons of 14.4 keV energy via a direct measurement of the temporal delay imposed on spectrally narrow x-ray pulses. Sub-luminal light propagation is achieved by inducing a steep positive linear dispersion in the optical response of 57{}^{57}Fe M\"ossbauer nuclei embedded in a thin film planar x-ray cavity. The direct detection of the temporal pulse delay is enabled by generating frequency-tunable spectrally narrow x-ray pulses from broadband pulsed synchrotron radiation. Our theoretical model is in good agreement with the experimental data.Comment: 8 pages, 4 figure

    Application of COMPOCHIP Microarray to Investigate the Bacterial Communities of Different Composts

    Get PDF
    A microarray spotted with 369 different 16S rRNA gene probes specific to microorganisms involved in the degradation process of organic waste during composting was developed. The microarray was tested with pure cultures, and of the 30,258 individual probe-target hybridization reactions performed, there were only 188 false positive (0.62%) and 22 false negative signals (0.07%). Labeled target DNA was prepared by polymerase chain reaction amplification of 16S rRNA genes using a Cy5-labeled universal bacterial forward primer and a universal reverse primer. The COMPOCHIP microarray was applied to three different compost types (green compost, manure mix compost, and anaerobic digestate compost) of different maturity (2, 8, and 16 weeks), and differences in the microorganisms in the three compost types and maturity stages were observed. Multivariate analysis showed that the bacterial composition of the three composts was different at the beginning of the composting process and became more similar upon maturation. Certain probes (targeting Sphingobacterium, Actinomyces, Xylella/Xanthomonas/ Stenotrophomonas, Microbacterium, Verrucomicrobia, Planctomycetes, Low G + C and Alphaproteobacteria) were more influential in discriminating between different composts. Results from denaturing gradient gel electrophoresis supported those of microarray analysis. This study showed that the COMPOCHIP array is a suitable tool to study bacterial communities in composts

    Compactification near and on the light front

    Get PDF
    We address problems associated with compactification near and on the light front. In perturbative scalar field theory we illustrate and clarify the relationships among three approaches: (1) quantization on a space-like surface close to a light front; (2) infinite momentum frame calculations; and (3) quantization on the light front. Our examples emphasize the difference between zero modes in space-like quantization and those in light front quantization. In particular, in perturbative calculations of scalar field theory using discretized light cone quantization there are well-known ``zero-mode induced'' interaction terms. However, we show that they decouple in the continuum limit and covariant answers are reproduced. Thus compactification of a light-like surface is feasible and defines a consistent field theory.Comment: 24 pages, 4 figure
    corecore