561 research outputs found
Probing the phase diagram of CeRu_2Ge_2 by thermopower at high pressure
The temperature dependence of the thermoelectric power, S(T), and the
electrical resistivity of the magnetically ordered CeRu_2Ge_2 (T_N=8.55 K and
T_C=7.40 K) were measured for pressures p < 16 GPa in the temperature range 1.2
K < T < 300 K. Long-range magnetic order is suppressed at a p_c of
approximately 6.4 GPa. Pressure drives S(T) through a sequence of temperature
dependences, ranging from a behaviour characteristic for magnetically ordered
heavy fermion compounds to a typical behaviour of intermediate-valent systems.
At intermediate pressures a large positive maximum develops above 10 K in S(T).
Its origin is attributed to the Kondo effect and its position is assumed to
reflect the Kondo temperature T_K. The pressure dependence of T_K is discussed
in a revised and extended (T,p) phase diagram of CeRu_2Ge_2.Comment: 7 pages, 6 figure
High-pressure transport properties of CeRu_2Ge_2
The pressure-induced changes in the temperature-dependent thermopower S(T)
and electrical resistivity \rho(T) of CeRu_2Ge_2 are described within the
single-site Anderson model. The Ce-ions are treated as impurities and the
coherent scattering on different Ce-sites is neglected. Changing the
hybridisation \Gamma between the 4f-states and the conduction band accounts for
the pressure effect. The transport coefficients are calculated in the
non-crossing approximation above the phase boundary line. The theoretical S(T)
and \rho(T) curves show many features of the experimental data. The seemingly
complicated temperature dependence of S(T) and \rho(T), and their evolution as
a function of pressure, is related to the crossovers between various fixed
points of the model.Comment: 9 pages, 10 figure
Kondo engineering : from single Kondo impurity to the Kondo lattice
In the first step, experiments on a single cerium or ytterbium Kondo impurity
reveal the importance of the Kondo temperature by comparison to other type of
couplings like the hyperfine interaction, the crystal field and the intersite
coupling. The extension to a lattice is discussed. Emphasis is given on the
fact that the occupation number of the trivalent configuration may be the
implicit key variable even for the Kondo lattice. Three phase
diagrams are discussed: CeRuSi, CeRhIn and SmS
Recommended from our members
Present and future nitrogen deposition to national parks in the United States: critical load exceedances
National parks in the United States are protected areas wherein the natural habitat is to be conserved for future generations. Deposition of anthropogenic nitrogen (N) transported from areas of human activity (fuel combustion, agriculture) may affect these natural habitats if it exceeds an ecosystem-dependent critical load (CL). We quantify and interpret the deposition to Class I US national parks for present-day and future (2050) conditions using the GEOS-Chem global chemical transport model with 1/2° × 2/3° horizontal resolution over North America. We estimate CL values in the range 2.5–5 kg N ha−1 yr−1 for the different parks to protect the most sensitive ecosystem receptors. For present-day conditions, we find 24 out of 45 parks to be in CL exceedance and 14 more to be marginally so. Many of these are in remote areas of the West. Most (40–85%) of the deposition originates from NOx emissions (fuel combustion). We project future changes in N deposition using representative concentration pathway (RCP) anthropogenic emission scenarios for 2050. These feature 52–73% declines in US NOx emissions relative to present but 19–50% increases in US ammonia (NH3) emissions. Nitrogen deposition at US national parks then becomes dominated by domestic NH3 emissions. While deposition decreases in the East relative to present, there is little progress in the West and increases in some regions. We find that 17–25 US national parks will have CL exceedances in 2050 based on the RCP8.5 and RCP2.6 scenarios. Even in total absence of anthropogenic NOx emissions, 14–18 parks would still have a CL exceedance. Returning all parks to N deposition below CL by 2050 would require at least a 50% decrease in US anthropogenic NH3 emissions relative to RCP-projected 2050 levels.Engineering and Applied Science
Recommended from our members
Atmospheric Peroxyacetyl Nitrate (PAN): A Global Budget and Source Attribution
Peroxyacetyl nitrate (PAN) formed in the atmospheric oxidation of non-methane volatile organic compounds (NMVOCs) is the principal tropospheric reservoir for nitrogen oxide radicals . PAN enables the transport and release of to the remote troposphere with major implications for the global distributions of ozone and OH, the main tropospheric oxidants. Simulation of PAN is a challenge for global models because of the dependence of PAN on vertical transport as well as complex and uncertain NMVOC sources and chemistry. Here we use an improved representation of NMVOCs in a global 3-D chemical transport model (GEOS-Chem) and show that it can simulate PAN observations from aircraft campaigns worldwide. The immediate carbonyl precursors for PAN formation include acetaldehyde (44% of the global source), methylglyoxal (30%), acetone (7%), and a suite of other isoprene and terpene oxidation products (19%). A diversity of NMVOC emissions is responsible for PAN formation globally including isoprene (37%) and alkanes (14%). Anthropogenic sources are dominant in the extratropical Northern Hemisphere outside the growing season. Open fires appear to play little role except at high northern latitudes in spring, although results are very sensitive to plume chemistry and plume rise. Lightning is the dominant contributor to the observed PAN maximum in the free troposphere over the South Atlantic.Engineering and Applied Science
Integrating transposable elements in the 3D genome
Chromosome organisation is increasingly recognised as an essential component of genome regulation, cell fate and cell health. Within the realm of transposable elements (TEs) however, the spatial information of how genomes are folded is still only rarely integrated in experimental studies or accounted for in modelling. Whilst polymer physics is recognised as an important tool to understand the mechanisms of genome folding, in this commentary we discuss its potential applicability to aspects of TE biology. Based on recent works on the relationship between genome organisation and TE integration, we argue that existing polymer models may be extended to create a predictive framework for the study of TE integration patterns. We suggest that these models may offer orthogonal and generic insights into the integration profiles (or "topography") of TEs across organisms. In addition, we provide simple polymer physics arguments and preliminary molecular dynamics simulations of TEs inserting into heterogeneously flexible polymers. By considering this simple model, we show how polymer folding and local flexibility may generically affect TE integration patterns. The preliminary discussion reported in this commentary is aimed to lay the foundations for a large-scale analysis of TE integration dynamics and topography as a function of the three-dimensional host genome
About females and males: continuity and discontinuity in flies
Through the decades of relentless and dedicated studies in Drosophila melanogaster, the pathway that governs sexual development has been elucidated in great detail and has become a paradigm in understanding fundamental cell-fate decisions. However, recent phylogenetic studies show that the molecular strategy used in Drosophila deviates in some important aspects from those found in other dipteran flies and suggest that the Drosophila pathway is likely to be a derivative of a simpler and more common principle. In this essay, I will discuss the evolutionary plasticity of the sex-determining pathway based on studies in the common housefly, Musca domestica. Diversification appears to primarily arise from subtle differences in the regulation of the key switch gene transformer at the top of the pathway. On the basis of these findings I propose a new idea on how the Drosophila pathway may have evolved from a more archetypal system such as in M. domestica. In essence, the arrival of an X counting mechanism mediated by Sex-lethal to compensate for X linked gene dose differences set the stage for an intimate coupling of the two pathways. Its precedent recruitment to the dosage compensation pathway allowed for an intervention in the regulation of transformer where it gradually and eventually' completely substituted for a need of transformer autoregulation
Xenon lighting adjusted to plant requirements
Xenon lamps are available as low and high power lamps with relatively high efficiency and a relatively long lifetime up to several thousand hours. Different construction types of short-arc and long-arc lamps permit a good adaptation to various applications in projection and illumination techniques without substantial changes of the spectral quality. Hence, the xenon lamp was the best choice for professional technical purposes where high power at simultaneously good spectral quality of the light was required. However, technical development does not stand still. Between the luminous efficacy of xenon lamps of 25-50 lm/W and the theoretical limit for 'white light' of 250 lm/W is still much room for improvement. The present development mainly favors other lamp types, like metal halide lamps and fluorescent lamps for commercial lighting purposes. The enclosed sections deal with some of the properties of xenon lamps relevant to plant illumination; particularly the spectral aspects, the temporal characteristics of the emission, and finally the economy of xenon lamps will be addressed. Due to radiation exceeding the natural global radiation in both the ultraviolet (UV) and the infrared (IR) regions, filter techniques have to be included into the discussion referring to the requirements of plant illumination. Most of the presented results were obtained by investigations in the GSF phytotron or in the closed Phytocell chambers of the University of Erlangen. As our experiences are restricted to area plant illumination rather than spot lights our discussion will concentrate on low pressure long-arc xenon lamps which are commonly used for such plant illuminations. As the spectral properties of short-arc lamps do not differ much from those of long-arc lamps most of our conclusions will be valid for high pressure xenon lamps too. These lamps often serve as light sources for small sun simulators and for monochromators which are used for action spectroscopy of plant responses
UV filters for lighting of plants
The wavelength dependent interaction of biological systems with radiation is commonly described by appropriate action spectra. Particularly effective plant responses are obtained for ultraviolet (UV) radiation. Excess shortwave UV-B radiation will induce genetic defects and plant damage. Besides the ecological discussion of the deleterious effects of the excess UV radiation there is increasing interest in horticultural applications of this spectral region. Several metabolic pathways leading to valuable secondary plant products like colors, odors, taste, or resulting in mechanical strength and vitality are triggered by UV radiation. Thus, in ecologically as well as in economically oriented experiments the exact generation and knowledge of the spectral irradiance, particularly near the UV absorption edge, is essential. The ideal filter 'material' to control the UV absorption edge would be ozone itself. However, due to problems in controlling the toxic and chemically aggressive, instable gas, only rather 'small ozone filters' have been realized so far. In artificial plant lighting conventional solid filter materials such as glass sheets and plastic foils (celluloseacetate or cellulosetriacetate) which can be easily handled have been used to absorb the UV-C and the excess shortwave UV-B radiation of the lamp emissions. Different filter glasses are available which provide absorption properties suitable for gradual changes of the spectral UV-B illumination of artificial lighting. Using a distinct set of lamps and filter glasses an acceptable simulation of the UV-B part of natural global radiation can be achieved. The aging of these and other filter materials under the extreme UV radiation in the lamphouse of a solar simulator is presently unavoidable. This instability can be dealt with only by a precise spectral monitoring and by replacing the filters accordingly. For this reason attempts would be useful to develop real ozone filters which can replace glass filters. In any case chamber experiments require a careful selection of the filter material used and must be accompanied by a continuous UV-B monitoring
Recovering the Imperfect: Cell Segmentation in the Presence of Dynamically Localized Proteins
Deploying off-the-shelf segmentation networks on biomedical data has become
common practice, yet if structures of interest in an image sequence are visible
only temporarily, existing frame-by-frame methods fail. In this paper, we
provide a solution to segmentation of imperfect data through time based on
temporal propagation and uncertainty estimation. We integrate uncertainty
estimation into Mask R-CNN network and propagate motion-corrected segmentation
masks from frames with low uncertainty to those frames with high uncertainty to
handle temporary loss of signal for segmentation. We demonstrate the value of
this approach over frame-by-frame segmentation and regular temporal propagation
on data from human embryonic kidney (HEK293T) cells transiently transfected
with a fluorescent protein that moves in and out of the nucleus over time. The
method presented here will empower microscopic experiments aimed at
understanding molecular and cellular function.Comment: Accepted at MICCAI Workshop on Medical Image Learning with Less
Labels and Imperfect Data, 202
- …
