851 research outputs found

    Roots and Fruits of Decoherence

    Full text link
    The concept of decoherence is defined, and discussed in a historical context. This is illustrated by some of its essential consequences which may be relevant for the interpretation of quantum theory. Various aspects of the formalism are also reviewed for this purpose. Contents: 1. Definition of concepts. 2. Roots in nuclear physics. 3. The quantum-to-classical transition. 4. Quantum mechanics without observables. 5. Rules versus tools. 6. Nonlocality. 7. Information loss (paradox?). 8. Dynamics of entanglement. 9. Irreversibility. 10. Concluding remarks.Comment: 19 pages, 3 figures: Talk given at the Seminaire Poincare (Paris, November 2005)- version 2 is a slightly extended and updated version of the proceedings (identical to v1

    On time and the quantum-to-classical transition in Jordan-Brans-Dicke quantum gravity

    Get PDF
    Any quantum theory of gravity which treats the gravitational constant as a dynamical variable has to address the issue of superpositions of states corresponding to different eigenvalues. We show how the unobservability of such superpositions can be explained through the interaction with other gravitational degrees of freedom (decoherence). The formal framework is canonically quantized Jordan-Brans-Dicke theory. We discuss the concepts of intrinsic time and semiclassical time as well as the possibility of tunneling into regions corresponding to a negative gravitational constant. We calculate the reduced density matrix of the Jordan-Brans-Dicke field and show that the off-diagonal elements can be sufficiently suppressed to be consistent with experiments. The possible relevance of this mechanism for structure formation in extended inflation is briefly discussed.Comment: 10 pages, Latex, ZU-TH 15/93, BUTP-93/1
    corecore