4,831 research outputs found
Robust Inference of Trees
This paper is concerned with the reliable inference of optimal
tree-approximations to the dependency structure of an unknown distribution
generating data. The traditional approach to the problem measures the
dependency strength between random variables by the index called mutual
information. In this paper reliability is achieved by Walley's imprecise
Dirichlet model, which generalizes Bayesian learning with Dirichlet priors.
Adopting the imprecise Dirichlet model results in posterior interval
expectation for mutual information, and in a set of plausible trees consistent
with the data. Reliable inference about the actual tree is achieved by focusing
on the substructure common to all the plausible trees. We develop an exact
algorithm that infers the substructure in time O(m^4), m being the number of
random variables. The new algorithm is applied to a set of data sampled from a
known distribution. The method is shown to reliably infer edges of the actual
tree even when the data are very scarce, unlike the traditional approach.
Finally, we provide lower and upper credibility limits for mutual information
under the imprecise Dirichlet model. These enable the previous developments to
be extended to a full inferential method for trees.Comment: 26 pages, 7 figure
A case of Muir-Torre syndrome associated with mucinous hepatic cholangiocarcinoma and a novel germline mutation of the MSH2 gene
Muir-Torre syndrome (MTS) is a rare cancer-predisposing syndrome that is autosomal dominantly inherited and characterized by the development of sebaceous skin lesions (adenomas, epitheliomas, basaliomas and carcinomas). These lesions are typically associated with tumors that belong to the spectrum of hereditary nonpolyposis colorectal cancer (HNPCC) (i.e. tumors of the colorectum, endometrium, stomach or ovary). Biliary malignancy in association with MTS has only rarely been reported. We report a case of Muir-Torre syndrome associated with intrahepatic cholangiocarcinoma, a location not previously described, and associated with a novel missense mutation of the MSH2 gene (c.2026T>C), predicted to disrupt the function of the gen
The strong coupling constant at small momentum as an instanton detector
We present a study of at small p computed from the lattice.
It shows a dramatic law which can be understood within an
instanton liquid model. In this framework the prefactor gives a direct measure
of the instanton density in thermalised configurations. A preliminary result
for this density is 5.27(4) fm^{-4}.Comment: 12 pages, 4 figure
From Teamchef Arminius to Hermann Junior: glocalised discourse about a national foundation myth
If for much of the nineteenth and twentieth centuries, the ‘Battle of the Teutoburg Forest’, fought in 9 CE between Roman armies and Germanic tribes, was predominantly a reference point for nationalist and chauvinist discourses in Germany, the first decade of the twenty-first century has seen attempts to link public remembrance with local/regional identities on the one hand and international/intercultural contact on the other. In the run up to and during the ‘anniversary year’ of 2009, German media, sports institutions and various other official institutions articulating tourist, economic and political interests attempted to create a new ‘glocalised’ version of the public memory of the Teutoburg battle. Combining methods of Cognitive Linguistics and Critical Discourse Analysis, the paper analyses the narrative and argumentative topoi employed in this re-orientation of public memory, with a special emphasis on hybrid, post-national identity-construction. Das zweitausendjährige Gedenkjahr der „Schlacht im Teutoburger Wald“ im Jahr 2009 bot eine günstige Gelegenheit, die bis in die zweite Hälfte des 20. Jahrhunderts dominante Tradition nationalistisch–chauvinistischer Deutungen des Sieges von germanischen Stämmen über drei römische Legionen zu korrigieren und zu überwinden. Der Aufsatz analysiert mit Hilfe diskurslinguistischer Methoden die Anstrengungen regionaler Institutionen und Medien, die nationale Vereinnahmung des historischen Gedenkens kritisch zu thematisieren sowie neue, zum eine lokal situierte, zum andern international orientierte Identifikationsangebote anzubieten. Die Analyse zeigt, dass solche „de-nationalisierten“ Identifikationsangebote zwar teilweise auch früher verwendet wurden, aber heutzutage rekontextualisiert und auf innovative Weise in den Vordergrund gestellt werden
Constraining Disk Parameters of Be Stars using Narrowband H-alpha Interferometry with the NPOI
Interferometric observations of two well-known Be stars, gamma Cas and phi
Per, were collected and analyzed to determine the spatial characteristics of
their circumstellar regions. The observations were obtained using the Navy
Prototype Optical Interferometer equipped with custom-made narrowband filters.
The filters isolate the H-alpha emission line from the nearby continuum
radiation, which results in an increased contrast between the interferometric
signature due to the H-alpha-emitting circumstellar region and the central
star. Because the narrowband filters do not significantly attenuate the
continuum radiation at wavelengths 50 nm or more away from the line, the
interferometric signal in the H-alpha channel is calibrated with respect to the
continuum channels. The observations used in this study represent the highest
spatial resolution measurements of the H-alpha-emitting regions of Be stars
obtained to date. These observations allow us to demonstrate for the first time
that the intensity distribution in the circumstellar region of a Be star cannot
be represented by uniform disk or ring-like structures, whereas a Gaussian
intensity distribution appears to be fully consistent with our observations.Comment: 23 pages, 14 figures, accepted for publication in A
A critical assessment of the Self-Interaction Corrected Local Density Functional method and its algorithmic implementation
We calculate the electronic structure of several atoms and small molecules by
direct minimization of the Self-Interaction Corrected Local Density
Approximation (SIC-LDA) functional. To do this we first derive an expression
for the gradient of this functional under the constraint that the orbitals be
orthogonal and show that previously given expressions do not correctly
incorporate this constraint. In our atomic calculations the SIC-LDA yields
total energies, ionization energies and charge densities that are superior to
results obtained with the Local Density Approximation (LDA). However, for
molecules SIC-LDA gives bond lengths and reaction energies that are inferior to
those obtained from LDA. The nonlocal BLYP functional, which we include as a
representative GGA functional, outperforms both LDA and SIC-LDA for all ground
state properties we considered.Comment: 14 pages, 5 figure
Salmeterol for the prevention of high-altitude pulmonary edema.
BACKGROUND: Pulmonary edema results from a persistent imbalance between forces that drive water into the air space and the physiologic mechanisms that remove it. Among the latter, the absorption of liquid driven by active alveolar transepithelial sodium transport has an important role; a defect of this mechanism may predispose patients to pulmonary edema. Beta-adrenergic agonists up-regulate the clearance of alveolar fluid and attenuate pulmonary edema in animal models.
METHODS: In a double-blind, randomized, placebo-controlled study, we assessed the effects of prophylactic inhalation of the beta-adrenergic agonist salmeterol on the incidence of pulmonary edema during exposure to high altitudes (4559 m, reached in less than 22 hours) in 37 subjects who were susceptible to high-altitude pulmonary edema. We also measured the nasal transepithelial potential difference, a marker of the transepithelial sodium and water transport in the distal airways, in 33 mountaineers who were prone to high-altitude pulmonary edema and 33 mountaineers who were resistant to this condition.
RESULTS: Prophylactic inhalation of salmeterol decreased the incidence of high-altitude pulmonary edema in susceptible subjects by more than 50 percent, from 74 percent with placebo to 33 percent (P=0.02). The nasal potential-difference value under low-altitude conditions was more than 30 percent lower in the subjects who were susceptible to high-altitude pulmonary edema than in those who were not susceptible (P<0.001).
CONCLUSIONS: Prophylactic inhalation of a beta-adrenergic agonist reduces the risk of high-altitude pulmonary edema. Sodium-dependent absorption of liquid from the airways may be defective in patients who are susceptible to high-altitude pulmonary edema. These findings support the concept that sodium-driven clearance of alveolar fluid may have a pathogenic role in pulmonary edema in humans and therefore represent an appropriate target for therapy
Low-Weight Primes for Lightweight Elliptic Curve Cryptography on 8-bit AVR Processors
Small 8-bit RISC processors and micro-controllers based on the AVR instruction set architecture are widely used in the embedded domain with applications ranging from smartcards over control systems to wireless sensor nodes. Many of these applications require asymmetric encryption or authentication, which has spurred a body of research into implementation aspects of Elliptic Curve Cryptography (ECC) on the AVR platform. In this paper, we study the suitability of a special class of finite fields, the so-called Optimal Prime Fields (OPFs), for a "lightweight" implementation of ECC with a view towards high performance and security. An OPF is a finite field Fp defined by a prime of the form p = u*2^k + v, whereby both u and v are "small" (in relation to 2^k) so that they fit into one or two registers of an AVR processor. OPFs have a low Hamming weight, which allows for a very efficient implementation of the modular reduction since only the non-zero words of p need to be processed. We describe a special variant of Montgomery multiplication for OPFs that does not execute any input-dependent conditional statements (e.g. branch instructions) and is, hence, resistant against certain side-channel attacks. When executed on an Atmel ATmega processor, a multiplication in a 160-bit OPF takes just 3237 cycles, which compares favorably with other implementations of 160-bit modular multiplication on an 8-bit processor. We also describe a performance-optimized and a security-optimized implementation of elliptic curve scalar multiplication over OPFs. The former uses a GLV curve and executes in 4.19M cycles (over a 160-bit OPF), while the latter is based on a Montgomery curve and has an execution time of approximately 5.93M cycles. Both results improve the state-of-the-art in lightweight ECC on 8-bit processors
INTEGRAL/SPI data segmentation to retrieve sources intensity variations
International audienceContext. The INTEGRAL/SPI, X/γ-ray spectrometer (20 keV–8 MeV) is an instrument for which recovering source intensity variations is not straightforward and can constitute a difficulty for data analysis. In most cases, determining the source intensity changes between exposures is largely based on a priori information.Aims. We propose techniques that help to overcome the difficulty related to source intensity variations, which make this step more rational. In addition, the constructed “synthetic” light curves should permit us to obtain a sky model that describes the data better and optimizes the source signal-to-noise ratios.Methods. For this purpose, the time intensity variation of each source was modeled as a combination of piecewise segments of time during which a given source exhibits a constant intensity. To optimize the signal-to-noise ratios, the number of segments was minimized. We present a first method that takes advantage of previous time series that can be obtained from another instrument on-board the INTEGRAL observatory. A data segmentation algorithm was then used to synthesize the time series into segments. The second method no longer needs external light curves, but solely SPI raw data. For this, we developed a specific algorithm that involves the SPI transfer function.Results. The time segmentation algorithms that were developed solve a difficulty inherent to the SPI instrument, which is the intensity variations of sources between exposures, and it allows us to obtain more information about the sources’ behavior
An exact expression to calculate the derivatives of position-dependent observables in molecular simulations with flexible constraints
In this work, we introduce an algorithm to compute the derivatives of
physical observables along the constrained subspace when flexible constraints
are imposed on the system (i.e., constraints in which the hard coordinates are
fixed to configuration-dependent values). The presented scheme is exact, it
does not contain any tunable parameter, and it only requires the calculation
and inversion of a sub-block of the Hessian matrix of second derivatives of the
function through which the constraints are defined. We also present a practical
application to the case in which the sought observables are the Euclidean
coordinates of complex molecular systems, and the function whose minimization
defines the constraints is the potential energy. Finally, and in order to
validate the method, which, as far as we are aware, is the first of its kind in
the literature, we compare it to the natural and straightforward
finite-differences approach in three molecules of biological relevance:
methanol, N-methyl-acetamide and a tri-glycine peptideComment: 13 pages, 8 figures, published versio
- …
