77 research outputs found
Expression and function of G-protein-coupled receptorsin the male reproductive tract
This review focuses on the expression and function of muscarinic acetylcholine receptors (mAChRs), α1-adrenoceptors and relaxin receptors in the male reproductive tract. The localization and differential expression of mAChR and α1-adrenoceptor subtypes in specific compartments of the efferent ductules, epididymis, vas deferens, seminal vesicle and prostate of various species indicate a role for these receptors in the modulation of luminal fluid composition and smooth muscle contraction, including effects on male fertility. Furthermore, the activation of mAChRs induces transactivation of the epidermal growth factor receptor (EGFR) and the Sertoli cell proliferation. The relaxin receptors are present in the testis, RXFP1 in elongated spermatids and Sertoli cells from rat, and RXFP2 in Leydig and germ cells from rat and human, suggesting a role for these receptors in the spermatogenic process. The localization of both receptors in the apical portion of epithelial cells and smooth muscle layers of the vas deferens suggests an involvement of these receptors in the contraction and regulation of secretion.Esta revisão enfatiza a expressão e a função dos receptores muscarínicos, adrenoceptores α1 e receptores para relaxina no sistema reprodutor masculino. A expressão dos receptores muscarínicos e adrenoceptores α1 em compartimentos específicos de dúctulos eferentes, epidídimo, ductos deferentes, vesícula seminal e próstata de várias espécies indica o envolvimento destes receptores na modulação da composição do fluido luminal e na contração do músculo liso, incluindo efeitos na fertilidade masculina. Além disso, a ativação dos receptores muscarínicos leva à transativação do receptor para o fator crescimento epidermal e proliferação das células de Sertoli. Os receptores para relaxina estão presentes no testículo, RXFP1 nas espermátides alongadas e células de Sertoli de rato e RXFP2 nas células de Leydig e germinativas de ratos e humano, sugerindo o envolvimento destes receptores no processo espermatogênico. A localização de ambos os receptores na porção apical das células epiteliais e no músculo liso dos ductos deferentes de rato sugere um papel na contração e na regulação da secreção.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Universidade Federal de São Paulo (UNIFESP) Escola Paulista de Medicina Departamento de FarmacologiaUNIFESP, EPM, Depto. de FarmacologiaSciEL
Hormonal signaling in cnidarians : do we understand the pathways well enough to know whether they are being disrupted?
Author Posting. © The Author, 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Ecotoxicology 16 (2007): 5-13, doi:10.1007/s10646-006-0121-1.Cnidarians occupy a key evolutionary position as basal metazoans and are ecologically
important as predators, prey and structure-builders. Bioregulatory molecules (e.g.,
amines, peptides and steroids) have been identified in cnidarians, but cnidarian signaling
pathways remain poorly characterized. Cnidarians, especially hydras, are regularly used
in toxicity testing, but few studies have used cnidarians in explicit testing for signal
disruption. Sublethal endpoints developed in cnidarians include budding, regeneration,
gametogenesis, mucus production and larval metamorphosis. Cnidarian genomic
databases, microarrays and other molecular tools are increasingly facilitating mechanistic
investigation of signaling pathways and signal disruption. Elucidation of cnidarian
signaling processes in a comparative context can provide insight into the evolution and
diversification of metazoan bioregulation. Characterizing signaling and signal disruption
in cnidarians may also provide unique opportunities for evaluating risk to valuable
marine resources, such as coral reefs
Guidelines and Safety Practices for Improving Patient Safety
AbstractThis chapter explains why clinical practice guidelines are needed to improve patient safety and how further research into safety practices can successfully influence the guideline development process. There is a description of the structured process by which guidelines that aim to increase the likelihood of a higher score are created. Proposals are made relating to (a) the live updating of individual guideline recommendations and (b) tackling challenges related to the improvement of guidelines
Molecular cloning of a novel, putative G protein-coupled receptor from sea anemones structurally related to members of the FSH, TSH, LH/CG receptor family from mammals
Molecular cloning, genomic organization, and developmental regulation of a novel receptor from Drosophila melanogaster structurally related to members of the thyroid-stimulating hormone, follicle-stimulating hormone, luteinizing hormone/choriogonadotropin receptor family from mammals
Isolation of L-3-phenyllactyl-Phe-Lys-Ala-NH2 (Antho-KAamide), a novel neuropeptide from sea anemones
The expansion behaviour of sea anemones may be coordinated by two inhibitory neuropeptides, Antho-KAamide and Antho-RIamide
- …
