2,126 research outputs found
Shape, spin and baryon fraction of clusters in the MareNostrum Universe
The MareNostrum Universe is one of the largest cosmological
SPH simulation done so far. It consists of dark and
gas particles in a box of 500 Mpc on a side. Here we study
the shapes and spins of the dark matter and gas components of the 10,000 most
massive objects extracted from the simulation as well as the gas fraction in
those objects. We find that the shapes of objects tend to be prolate both in
the dark matter and gas. There is a clear dependence of shape on halo mass, the
more massive ones being less spherical than the less massive objects. The gas
distribution is nevertheless much more spherical than the dark matter, although
the triaxiality parameters of gas and dark matter differ only by a few percent
and it increases with cluster mass. The spin parameters of gas and dark matter
can be well fitted by a lognormal distribution function. On average, the spin
of gas is 1.4 larger than the spin of dark matter. We find a similar behavior
for the spins at higher redshifts, with a slightly decrease of the spin ratios
to 1.16 at The cosmic normalized baryon fraction in the entire cluster
sample ranges from , at to at . At both
redshifts we find a slightly, but statistically significant decrease of
with cluster mass.Comment: 7 pages, 6 figures. Accepted for publication in The Astrophysical
Journa
Hot Topics in Ultra-Peripheral Collisions
Ultra-peripheral collisions of relativistic heavy ions involve long-ranged
electromagnetic interactions at impact parameters too large for hadronic
interactions to occur. The nuclear charges are large; with the coherent
enhancement, the cross sections are also large. Many types of photonuclear and
purely electromagnetic interactions are possible. We present here an
introduction to ultra-peripheral collisions, and present four of the most
compelling physics topics. This note developed from a discussion at a workshop
on ``Electromagnetic Probes of Fundamental Physics,'' in Erice, Italy, Oct.
16-21, 2001.Comment: 7 pages, with 3 figures. This developed from a discussion at the
workshop on "Electromagnetic Probes of Fundamental Physics," Oct. 16-21,
Erice, Ital
SIG et évaluation des risques naturels : application aux risques sismiques de Quito
L'article retrace rapidement les principales étapes de la réalisation d'un scénario sismique sur la ville de Quito. Les croisements nécessaires entre les données provenant de domaines variés (sciences de la terre, ingénierie civile, et sociodémographie) ont pu être effectués rapidement grâce à l'utilisation du SIG SAVANE. LE SIG a permis l'édition de documents graphiques décrivant de façon concrète la vulnérabilité sismique de la ville, facilitant ainsi la prise de conscience des responsables politiques et économiques. (Résumé d'auteur
Cosmological Feedback from High-Redshift Dwarf Galaxies
We model how repeated supernova explosions in high-redshift dwarf starburst
galaxies drive superbubbles and winds out of the galaxies. We compute the
efficiencies of metal and mass ejection and energy transport from the galactic
potentials, including the effect of cosmological infall of external gas. The
starburst bubbles quickly blow out of small, high-redshift, galactic disks, but
must compete with the ram pressure of the infalling gas to escape into
intergalactic space. We show that the assumed efficiency of the star formation
rate dominates the bubble evolution and the metal, mass, and energy feedback
efficiencies. With star formation efficiency f*=0.01, the ram pressure of
infall can confine the bubbles around high-redshift dwarf galaxies with
circular velocities v_c>52 km/s. We can expect high metal and mass ejection
efficiencies, and moderate energy transport efficiencies in halos with
v_c~30-50 km/s and f*~0.01 as well as in halos with v_c~100 km/s and f*>>0.01.
Such haloes collapse successively from 1-2 sigma peaks in LambdaCDM Gaussian
density perturbations as time progresses. These dwarf galaxies can probably
enrich low and high-density regions of intergalactic space with metals to
10^-3-10^-2 Zsun as they collapse at z~8 and z<5 respectively. They also may be
able to provide adequate turbulent energy to prevent the collapse of other
nearby halos, as well as to significantly broaden Lyman-alpha absorption lines
to v_rms~20-40 km/s. We compute the timescales for the next starbursts if gas
freely falls back after a starburst, and find that, for star formation
efficiencies as low as f*<0.01, the next starburst should occur in less than
half the Hubble time at the collapse redshift. This suggests that episodic star
formation may be ubiquitous in dwarf galaxies.Comment: Accepted for ApJ v613, 60 pages, 15 figure
Photon Physics in Heavy Ion Collisions at the LHC
Various pion and photon production mechanisms in high-energy nuclear
collisions at RHIC and LHC are discussed. Comparison with RHIC data is done
whenever possible. The prospect of using electromagnetic probes to characterize
quark-gluon plasma formation is assessed.Comment: Writeup of the working group "Photon Physics" for the CERN Yellow
Report on "Hard Probes in Heavy Ion Collisions at the LHC", 134 pages. One
figure added in chapter 5 (comparison with PHENIX data). Some figures and
correponding text corrected in chapter 6 (off-chemical equilibrium thermal
photon rates). Some figures modified in chapter 7 (off-chemical equilibrium
photon rates) and comparison with PHENIX data adde
The Global Earthquake Model Physical Vulnerability Database
There are almost 50 years of research on fragility and vulnerability assessment, both key
elements in seismic risk or loss estimation. This paper presents the online database of
physical vulnerability models that has been created as part of the Global Earthquake Model
(GEM) initiative. The database comprises fragility and vulnerability curves, damage-to-loss
models, and capacity curves for various types of structures. The attributes that have been
selected to characterize each function, the constraints of setting up a usable database, the
challenges in collecting these models, and the current trends in the development of
vulnerability models are discussed in this study. The current collection of models leverages
upon the outputs of several initiatives, such as GEM’s Global Vulnerability Consortium and
the European Syner-G project. This database is publicly available through the web-based
GEM OpenQuake-platform http://doi.org/10.13117/GEM.DATASET.VULN.WEB-V1.
Hubble Space Telescope Weak-lensing Study of the Galaxy Cluster XMMU J2235.3-2557 at z=1.4: A Surprisingly Massive Galaxy Cluster when the Universe is One-third of its Current Age
We present a weak-lensing analysis of the z=1.4 galaxy cluster XMMU
J2235.3-2557, based on deep Advanced Camera for Surveys images. Despite the
observational challenge set by the high redshift of the lens, we detect a
substantial lensing signal at the >~ 8 sigma level. This clear detection is
enabled in part by the high mass of the cluster, which is verified by our both
parametric and non-parametric estimation of the cluster mass. Assuming that the
cluster follows a Navarro-Frenk-White mass profile, we estimate that the
projected mass of the cluster within r=1 Mpc is (8.5+-1.7) x 10^14 solar mass,
where the error bar includes the statistical uncertainty of the shear profile,
the effect of possible interloping background structures, the scatter in
concentration parameter, and the error in our estimation of the mean redshift
of the background galaxies. The high X-ray temperature 8.6_{-1.2}^{+1.3} keV of
the cluster recently measured with Chandra is consistent with this high lensing
mass. When we adopt the 1-sigma lower limit as a mass threshold and use the
cosmological parameters favored by the Wilkinson Microwave Anisotropy Probe
5-year (WMAP5) result, the expected number of similarly massive clusters at z
>~ 1.4 in the 11 square degree survey is N ~ 0.005. Therefore, the discovery of
the cluster within the survey volume is a rare event with a probability < 1%,
and may open new scenarios in our current understanding of cluster formation
within the standard cosmological model.Comment: Accepted to ApJ for publication. 40 pages and 14 figure
The Low Redshift survey at Calar Alto (LoRCA)
The Baryon Acoustic Oscillation (BAO) feature in the power spectrum of
galaxies provides a standard ruler to measure the accelerated expansion of the
Universe. To extract all available information about dark energy, it is
necessary to measure a standard ruler in the local, z<0.2, universe where dark
energy dominates most the energy density of the Universe. Though the volume
available in the local universe is limited, it is just big enough to measure
accurately the long 100 Mpc/h wave-mode of the BAO. Using cosmological N-body
simulations and approximate methods based on Lagrangian perturbation theory, we
construct a suite of a thousand light-cones to evaluate the precision at which
one can measure the BAO standard ruler in the local universe. We find that
using the most massive galaxies on the full sky (34,000 sq. deg.), i.e. a
K(2MASS)<14 magnitude-limited sample, one can measure the BAO scale up to a
precision of 4\% and 1.2\% using reconstruction). We also find that such a
survey would help to detect the dynamics of dark energy.Therefore, we propose a
3-year long observational project, named the Low Redshift survey at Calar Alto
(LoRCA), to observe spectroscopically about 200,000 galaxies in the northern
sky to contribute to the construction of aforementioned galaxy sample. The
suite of light-cones is made available to the public.Comment: 15 pages. Accepted in MNRAS. Please visit our website:
http://lorca-survey.ft.uam.es
UNIT project: Universe -body simulations for the Investigation of Theoretical models from galaxy surveys
We present the UNIT -body cosmological simulations project, designed to
provide precise predictions for nonlinear statistics of the galaxy
distribution. We focus on characterizing statistics relevant to emission line
and luminous red galaxies in the current and upcoming generation of galaxy
surveys. We use a suite of precise particle mesh simulations (FastPM) as well
as with full -body calculations with a mass resolution of M to investigate the recently suggested
technique of Angulo & Pontzen 2016 to suppress the variance of cosmological
simulations We study redshift space distortions, cosmic voids, higher order
statistics from down to . We find that both two- and three-point
statistics are unbiased. Over the scales of interest for baryon acoustic
oscillations and redshift-space distortions, we find that the variance is
greatly reduced in the two-point statistics and in the cross correlation
between halos and cosmic voids, but is not reduced significantly for the
three-point statistics. We demonstrate that the accuracy of the two-point
correlation function for a galaxy survey with effective volume of 20
(Gpc) is improved by about a factor of 40, indicating that two
pairs of simulations with a volume of 1 (Gpc) lead to the
equivalent variance of 150 such simulations. The -body simulations
presented here thus provide an effective survey volume of about seven times the
effective survey volume of DESI or Euclid. The data from this project,
including dark matter fields, halo catalogues, and their clustering statistics,
are publicly available at http://www.unitsims.org.Comment: 12 pages, 9 figures. This version matches the one accepted by MNRAS.
The data from this project are publicly available at: http://www.unitsims.or
- …
