4,183,943 research outputs found

    How to capture active particles

    Full text link
    For many applications, it is important to catch collections of autonomously navigating microbes and man-made microswimmers in a controlled way. Here we propose an efficient trap to collectively capture self-propelled colloidal rods. By means of computer simulation in two dimensions, we show that a static chevron-shaped wall represents an optimal boundary for a trapping device. Its catching efficiency can be tuned by varying the opening angle of the trap. For increasing angles, there is a sequence of three emergent states corresponding to partial, complete, and no trapping. A trapping `phase diagram' maps out the trap conditions under which the capture of self-propelled particles at a given density is rendered optimal.Comment: 5 pages, 4 figure

    Influenza A nucleoprotein binding sites for antivirals: current research and future potential

    Get PDF
    This document is the Accepted Manuscript version of the following article: Andreas Kukol and Hershna Patel, ‘Influenza A nucleoprotein binding sites for antivirals: current research and future potential’, Future Biology, Vol 9(7): 625-627, July 2014. The version of record is available online at doi: 10.2217/fvl.14.45Peer reviewedFinal Accepted Versio

    Slow-roll inflationary senario in the maximally extended background

    Get PDF
    During the inflationary epoch,geometry of the universe may be described by quasi-de Sitter space. On the other hand,maximally extended de Sitter metric in the comoving coordinates accords with a special FLRW model with positive spatial curvature,so in this article we focus on the positively curved inflationary paradigm.For this purpose,first we derive the power spectra of comoving curvature perturbation and primordial gravitational waves in a positively curved FLRW universe according to the slowly rolling inflationary senario. It can be shown that the curvature spectral index in this model automatically has a small negative running parameter which is compatible with observational measurements.Then,by taking into account the curvature factor,we investigate the relative amplitude of the scalar and tensor perturbations.It would be clarified that the tensor-scalar ratio for this model against the spatially flat one,depends on the waelength of the perturbative models directly.Comment: 21 pages,n o figure

    Point defects in silicon after zinc diffusion - a deep level transient spectroscopy and spreading-resistance profiling study

    Get PDF
    We present results from spreading-resistance profiling and deep level transient spectroscopy on Si after Zn diffusion at 1294 K. Concentration profiles of substitutional in dislocation-free and highly dislocated Si are described by a diffusion mechanism involving interstitial-substitutional exchange. Additional annealing at 873 K following quenching from the diffusion temperature is required in the case of dislocation-free Si to electrically activate . The formation of complexes of with unwanted impurities upon quenching is discussed. Additional Ni diffusion experiments as well as total energy calculations suggest that Ni is a likely candidate for the passivation of Zns. From total energy calculations we find that the formation of complexes involving Zn and Ni depends on the position of the Fermi level. This explains differences in results from spreading-resistance profiling and deep level transient spectroscopy on near-intrinsic and p-type Si, respectively

    Numerical model to account for the influence of infill masonry on the RC structures behaviour

    Get PDF
    It is a common misconception considers that masonry infill walls in structural RC buildings can only increase the overall lateral load capacity, and, therefore, must always be considered beneficial to seismic performance. Recent earthquakes have showed numerous examples of severe damages or collapses of buildings caused by structural response modification induced by the non-structural masonry partitions. From a state-of-the-art review of the available numerical models for the representation of the infill masonry behaviour in structural response, it was proposed an upgraded model. The proposed model is inspired on the equivalent bi-diagonal compression strut model, and considers the non-linear behaviour of the infill masonry subjected to cyclic loads. The model was implemented and calibrated in a non-linear dynamic computer code, VISUALANL. In this paper, it is presented the proposed model and the results of the calibration analyses are briefly introduced and discussed
    corecore