166 research outputs found
Radio-frequency operation of a double-island single-electron transistor
We present results on a double-island single-electron transistor (DISET)
operated at radio-frequency (rf) for fast and highly sensitive detection of
charge motion in the solid state. Using an intuitive definition for the charge
sensitivity, we compare a DISET to a conventional single-electron transistor
(SET). We find that a DISET can be more sensitive than a SET for identical,
minimum device resistances in the Coulomb blockade regime. This is of
particular importance for rf operation where ideal impedance matching to 50 Ohm
transmission lines is only possible for a limited range of device resistances.
We report a charge sensitivity of 5.6E-6 e/sqrt(Hz) for a rf-DISET, together
with a demonstration of single-shot detection of small (<=0.1e) charge signals
on microsecond timescales.Comment: 6 pages, 6 figure
Noise performance of the radio-frequency single-electron transistor
We have analyzed a radio-frequency single-electron-transistor (RF-SET) circuit that includes a high-electron-mobility-transistor (HEMT)amplifier, coupled to the single-electron-transistor (SET) via an impedance transformer. We consider how power is transferred between different components of the circuit, model noise components, and analyze the operating conditions of practical importance. The results are compared with experimental data on SETs. Good agreement is obtained between our noise model and the experimental results. Our analysis shows, also, that the biggest improvement to the present RF-SETs will be achieved by increasing the charging energy and by lowering the HEMT amplifier noise contribution.Peer reviewe
Comparative Modelling of the Spectra of Cool Giants
Our ability to extract information from the spectra of stars depends on
reliable models of stellar atmospheres and appropriate techniques for spectral
synthesis. Various model codes and strategies for the analysis of stellar
spectra are available today. We aim to compare the results of deriving stellar
parameters using different atmosphere models and different analysis strategies.
The focus is set on high-resolution spectroscopy of cool giant stars. Spectra
representing four cool giant stars were made available to various groups and
individuals working in the area of spectral synthesis, asking them to derive
stellar parameters from the data provided. The results were discussed at a
workshop in Vienna in 2010. Most of the major codes currently used in the
astronomical community for analyses of stellar spectra were included in this
experiment. We present the results from the different groups, as well as an
additional experiment comparing the synthetic spectra produced by various codes
for a given set of stellar parameters. Similarities and differences of the
results are discussed. Several valid approaches to analyze a given spectrum of
a star result in quite a wide range of solutions. The main causes for the
differences in parameters derived by different groups seem to lie in the
physical input data and in the details of the analysis method. This clearly
shows how far from a definitive abundance analysis we still are.Comment: accepted for publication in A&A. This version includes also the
online tables. Reference spectra will later be available via the CD
Josephson charge-phase qubit with radio frequency readout: coupling and decoherence
The charge-phase Josephson qubit based on a superconducting single charge
transistor inserted in a low-inductance superconducting loop is considered. The
loop is inductively coupled to a radio-frequency driven tank circuit enabling
the readout of the qubit states by measuring the effective Josephson inductance
of the transistor. The effect of qubit dephasing and relaxation due to electric
and magnetic control lines as well as the measuring system is evaluated.
Recommendations for operation of the qubit in magic points producing minimum
decoherence are given.Comment: 11 pages incl. 6 fig
A simple photoacoustic method for the in situ study of soot distribution in flames
This paper presents a simple photoacoustic technique capable of quantifying soot volume fraction across a range of flame conditions. The output of a high-power (30 W) 808-nm cw-diode laser was modulated in order to generate an acoustic pressure wave via laser heating of soot within the flame. The generated pressure wave was detected using a micro-electro-mechanical microphone mounted close to a porous-plug flat-flame burner. Measurements were taken using the photoacoustic technique in flames of three different equivalence ratios and were compared to laser-induced incandescence. The results presented here show good agreement between the two techniques and show the potential of the photoacoustic method as a way to measure soot volume fraction profiles in this type of flame. We discuss the potential to implement this technique with much lower laser power than was used in the experiments presented here
Home and health in people ageing with Parkinson’s disease: study protocol for a prospective longitudinal cohort survey study
Study protocol: to investigate effects of highly specialized rehabilitation for patients with multiple sclerosis. A randomized controlled trial of a personalized, multidisciplinary intervention
AngII-induced glomerular mesangial cell proliferation inhibited by losartan via changes in intracellular calcium ion concentration
- …
