1,592 research outputs found
Experimental and modal verification of an integral equation solution for a thin-walled dichroic plate with cross-shaped holes
In order to add the capability of an X-band uplink onto the 70-m antenna, a new dichroic plate is needed to replace the Pyle-guide-shaped dichroic plate currently in use. The replacement dichroic plate must exhibit an additional passband at the new uplink frequency of 7.165 GHz, while still maintaining a passband at the existing downlink frequency of 8.425 GHz. Because of the wide frequency separation of these two passbands, conventional methods of designing air-filled dichroic plates exhibit grating lobe problems. A new method of solving this problem by using a dichroic plate with cross-shaped holes is presented and verified experimentally. Two checks of the integral equation solution are described. One is the comparison to a modal analysis for the limiting cross shape of a square hole. As a final check, a prototype dichroic plate with cross-shaped holes was built and measured
Prospects of the measurement of Bs0 oscillations with the ATLAS detector at LHC
An estimation of the sensitivity to measure Bs-Bsbar oscillations with the
ATLAS detector is given for the detector geometry of initial layout. The delta
ms reach is derived from unbinned maximum likelihood amplitude fits using Bs0
events generated with a simplified Monte Carlo method.Comment: Poster at the XXVI Physics in Collision Conference (PIC06), Buzios,
Brasil, July 2006, 4 pages, LaTeX, 6 eps figures. PSN THUPO0
Do we know the mass of a black hole? Mass of some cosmological black hole models
Using a cosmological black hole model proposed recently, we have calculated
the quasi-local mass of a collapsing structure within a cosmological setting
due to different definitions put forward in the last decades to see how similar
or different they are. It has been shown that the mass within the horizon
follows the familiar Brown-York behavior. It increases, however, outside the
horizon again after a short decrease, in contrast to the Schwarzschild case.
Further away, near the void, outside the collapsed region, and where the
density reaches the background minimum, all the mass definitions roughly
coincide. They differ, however, substantially far from it. Generically, we are
faced with three different Brown-York mass maxima: near the horizon, around the
void between the overdensity region and the background, and another at
cosmological distances corresponding to the cosmological horizon. While the
latter two maxima are always present, the horizon mass maxima is absent before
the onset of the central singularity.Comment: 11 pages, 8 figures, revised version, accepted in General Relativity
and Gravitatio
Back-to-back emission of the electrons in double photoionization of helium
We calculate the double differential distributions and distributions in
recoil momenta for the high energy non-relativistic double photoionization of
helium. We show that the results of recent experiments is the pioneering
experimental manifestation of the quasifree mechanism for the double
photoionization, predicted long ago in our papers. This mechanism provides a
surplus in distribution over the recoil momenta at small values of the latter,
corresponding to nearly "back-to-back" emission of the electrons. Also in
agreement with previous analysis the surplus is due to the quadrupole terms of
the photon-electron interaction. We present the characteristic angular
distribution for the "back-to-back" electron emission. The confirmation of the
quasifree mechanism opens a new area of exiting experiments, which are expected
to increase our understanding of the electron dynamics and of the bound states
structure. The results of this Letter along with the recent experiments open a
new field for studies of two-electron ionization not only by photons but by
other projectiles, e.g. by fast electrons or heavy ions.Comment: 10 pages, 2 figure
A Republic of Laughter: Marietta Holley and the Production of Women’s Public Humour in the Late-Nineteenth-Century United States
In the latter half of the nineteenth century, Marietta Holley enjoyed massive success as one of the most popular American humourists. Known as “the female Mark Twain” (Curry xiii). Holley blended dialect and regional humour into a new, democratic and transformative genre that challenged conventional representations of women’s emotional life and their relation to public and political spaces. In this paper, I define the genre of humour writing Holley helped to fashion, “women’s public humour,” and situate it in relation to political and social notions of the public, especially those fractured along gender lines, that were of key interest to the late-nineteenth and early-twentieth-century U.S. humour industry
Imaging Molecular Structure through Femtosecond Photoelectron Diffraction on Aligned and Oriented Gas-Phase Molecules
This paper gives an account of our progress towards performing femtosecond
time-resolved photoelectron diffraction on gas-phase molecules in a pump-probe
setup combining optical lasers and an X-ray Free-Electron Laser. We present
results of two experiments aimed at measuring photoelectron angular
distributions of laser-aligned 1-ethynyl-4-fluorobenzene (C8H5F) and
dissociating, laseraligned 1,4-dibromobenzene (C6H4Br2) molecules and discuss
them in the larger context of photoelectron diffraction on gas-phase molecules.
We also show how the strong nanosecond laser pulse used for adiabatically
laser-aligning the molecules influences the measured electron and ion spectra
and angular distributions, and discuss how this may affect the outcome of
future time-resolved photoelectron diffraction experiments.Comment: 24 pages, 10 figures, Faraday Discussions 17
Model Calculations for the Two-Fragment Electro-Disintegration of He
Differential cross sections for the electro-disintegration process are calculated, using a model in which
the final state interaction is included by means of a nucleon-nucleus (3+1)
potential constructed via Marchenko inversion. The required bound-state wave
functions are calculated within the integrodifferential equation approach
(IDEA). In our model the important condition that the initial bound state and
the final scattering state are orthogonal is fulfilled. The sensitivity of the
cross section to the input interaction in certain kinematical regions
is investigated. The approach adopted could be useful in reactions involving
few cluster systems where effective interactions are not well known and exact
methods are presently unavailable. Although, our Plane-Wave Impulse
Approximation results exhibit, similarly to other calculations, a dip in the
five-fold differential cross-section around a missing momentum of , it is argued that this is an artifact of the omission of re-scattering
four-nucleon processes.Comment: 16 pages, 6 figures, accepted for publication by Phys.Rev.
The porin and the permeating antibiotic: A selective diffusion barrier in gram-negative bacteria
Gram-negative bacteria are responsible for a large proportion of antibiotic resistant bacterial diseases. These bacteria have a complex cell envelope that comprises an outer membrane and an inner membrane that delimit the periplasm. The outer membrane contains various protein channels, called porins, which are involved in the influx of various compounds, including several classes of antibiotics. Bacterial adaptation to reduce influx through porins is an increasing problem worldwide that contributes, together with efflux systems, to the emergence and dissemination of antibiotic resistance. An exciting challenge is to decipher the genetic and molecular basis of membrane impermeability as a bacterial resistance mechanism. This Review outlines the bacterial response towards antibiotic stress on altered membrane permeability and discusses recent advances in molecular approaches that are improving our knowledge of the physico-chemical parameters that govern the translocation of antibiotics through porin channel
Angular momentum and an invariant quasilocal energy in general relativity
Owing to its transformation property under local boosts, the Brown-York
quasilocal energy surface density is the analogue of E in the special
relativity formula: E^2-p^2=m^2. In this paper I will motivate the general
relativistic version of this formula, and thereby arrive at a geometrically
natural definition of an `invariant quasilocal energy', or IQE. In analogy with
the invariant mass m, the IQE is invariant under local boosts of the set of
observers on a given two-surface S in spacetime. A reference energy subtraction
procedure is required, but in contrast to the Brown-York procedure, S is
isometrically embedded into a four-dimensional reference spacetime. This
virtually eliminates the embeddability problem inherent in the use of a
three-dimensional reference space, but introduces a new one: such embeddings
are not unique, leading to an ambiguity in the reference IQE. However, in this
codimension-two setting there are two curvatures associated with S: the
curvatures of its tangent and normal bundles. Taking advantage of this fact, I
will suggest a possible way to resolve the embedding ambiguity, which at the
same time will be seen to incorporate angular momentum into the energy at the
quasilocal level. I will analyze the IQE in the following cases: both the
spatial and future null infinity limits of a large sphere in asymptotically
flat spacetimes; a small sphere shrinking toward a point along either spatial
or null directions; and finally, in asymptotically anti-de Sitter spacetimes.
The last case reveals a striking similarity between the reference IQE and a
certain counterterm energy recently proposed in the context of the conjectured
AdS/CFT correspondence.Comment: 54 pages LaTeX, no figures, includes brief summary of results,
submitted to Physical Review
- …
