10,495 research outputs found

    Hunting for New Physics with Unitarity Boomerangs

    Get PDF
    Although the unitarity triangles (UTsUTs) carry information about the Kobayashi-Maskawa (KM) quark mixing matrix, it explicitly contains just three parameters which is one short to completely fix the KM matrix. It has been shown recently, by us, that the unitarity boomerangs (UBUB) formed using two UTsUTs, with a common inner angle, can completely determine the KM matrix and, therefore, better represents, quark mixing. Here, we study detailed properties of the UBsUBs, of which there are a total 18 possible. Among them, there is only one which does not involve very small angles and is the ideal one for practical uses. Although the UBsUBs have different areas, there is an invariant quantity, for all UBsUBs, which is equal to a quarter of the Jarlskog parameter JJ squared. Hunting new physics, with a unitarity boomerang, can reveal more information, than just using a unitarity triangle.Comment: Latex 9 pages with two figures. References updated

    The nonplanar cusp and collinear anomalous dimension at four loops in N=4{\mathcal N} = 4 SYM theory

    Full text link
    We present numerical results for the nonplanar lightlike cusp and collinear anomalous dimension at four loops in N=4{\mathcal N} = 4 SYM theory, which we infer from a calculation of the Sudakov form factor. The latter is expressed as a rational linear combination of uniformly transcendental integrals for arbitrary colour factor. Numerical integration in the nonplanar sector reveals explicitly the breakdown of quadratic Casimir scaling at the four-loop order. A thorough analysis of the reported numerical uncertainties is carried out.Comment: 10 pages, 2 figures, 1 table. Proceedings of the 13th International Symposium on Radiative Corrections (Applications of Quantum Field Theory to Phenomenology), 25-29 September, 2017, St. Gilgen, Austri

    Four-Loop Nonplanar Cusp Anomalous Dimension in N=4 Supersymmetric Yang-Mills Theory

    Full text link
    The light-like cusp anomalous dimension is a universal function that controls infrared divergences in quite general quantum field theories. In the maximally supersymmetric Yang-Mills theory this function is fixed fully by integrability to the three-loop order. At four loops a non-planar correction appears which we obtain for the first time from a numerical computation of the Sudakov form factor. Key ingredients are widely applicable methods to control the number-theoretic aspects of the appearing integrals. Our result shows explicitly that quadratic Casimir scaling breaks down at four loops.Comment: 8 pages, v3: typo fixed for I_2^{(22)} in Supplemental material, final result unchange

    Hydrogen Embrittlement of Aluminum: the Crucial Role of Vacancies

    Full text link
    We report first-principles calculations which demonstrate that vacancies can combine with hydrogen impurities in bulk aluminum and play a crucial role in the embrittlement of this prototypical ductile solid. Our studies of hydrogen-induced vacancy superabundant formation and vacancy clusterization in aluminum lead to the conclusion that a large number of H atoms (up to twelve) can be trapped at a single vacancy, which over-compensates the energy cost to form the defect. In the presence of trapped H atoms, three nearest-neighbor single vacancies which normally would repel each other, aggregate to form a trivacancy on the slip plane of Al, acting as embryos for microvoids and cracks and resulting in ductile rupture along the these planes.Comment: To appear in Phys. Rev. Let

    Magnitude of Magnetic Field Dependence of a Possible Selective Spin Filter in ZnSe/Zn_{1-x}Mn_{x}Se Multilayer Heterostructure

    Full text link
    Spin-polarized transport through a band-gap-matched ZnSe/Zn_{1-x}Mn_{x} Se/ZnSe/Zn_{1-x}Mn_{x}Se/ZnSe multilayer structure is investigated. The resonant transport is shown to occur at different energies for different spins owing to the split of spin subbands in the paramagnetic layers. It is found that the polarization of current density can be reversed in a certain range of magnetic field, with the peak of polarization moving towards a stronger magnetic field for increasing the width of central ZnSe layer while shifting towards an opposite direction for increasing the width of paramagnetic layer. The reversal is limited in a small-size system. A strong suppression of the spin up component of the current density is present at high magnetic field. It is expected that such a reversal of the polarization could act as a possible mechanism for a selective spin filter device
    corecore