1,101 research outputs found
Mirror formation control in the vicinity of an asteroid
Two strategies are presented for the positioning and control of a spacecraft formation designed to focus sunlight onto a point on the surface of asteroid, thereby sublimating the material and ejecting debris creating thrust. In the first approach, the formation is located at artficial equilibrium points around the asteroid and controlled using the force from the solar radiation pressure. The second approach determines the optimal periodic formation orbits, subject to the gravitational perturbations from the asteroid, the solar radiation pressure and the control acceleration derived from a control law
Enhancing breadth of knowledge within multidisciplinary doctoral research: reflections from the Cambridge Generic Nutrition Training course for non-nutritionist postgraduates and professionals
Full Tex
Accessing Sodium Ferrate complexes containing neutral and anionic N-heterocyclic carbene ligands : structural, synthetic, and magnetic insights
This study reports the synthesis and single-crystal X-ray crystallographic, NMR spectroscopic, and magnetic characterization of a series of sodium ferrates using bis(amide) Fe(HMDS)2 as a precursor (HMDS = 1,1,1,3,3,3-hexamethyldisilazide). Reaction with sodium reagents NaHMDS and NaCH2SiMe3 in hexane afforded donor-solvent-free sodium ferrates [{NaFe(HMDS)3}∞] (1) and [{NaFe(HMDS)2(CH2SiMe3)}∞] (2), respectively, which exhibit contacted ion pair structures, giving rise to new polymeric chain arrangements made up of a combination of inter- and intramolecular Na···Me(HMDS) electrostatic interactions. Addition of the unsaturated NHC IPr (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) to 1 and 2 caused deaggregation of their polymeric structures to form discrete NHC-stabilized solvent-separated ion pairs [Na(IPr)2]+[Fe(HMDS)3]- (3) and [(THF)3·NaIPr]+[Fe(HMDS)2CH2SiMe3]- (4), where in both cases, the NHC ligand coordinates preferentially to Na. In contrast, when IPr is sequentially reacted with the single-metal reagents NaCH2SiMe3 and Fe(HMDS)2, the novel heteroleptic ferrate (THF)3Na[:C{[N(2,6-iPr2C6H3)]2CHCFe(HMDS)2}] (5) is obtained. This contains an anionic NHC ligand acting as an unsymmetrical bridge between the two metals, coordinating through its abnormal C4 position to Fe and its normal C2 position to Na. The formation of 5 can be described as an indirect ferration process where IPr is first metalated at the C4 position by the polar sodium alkyl reagent, which in turn undergoes transmetalation to the more electronegative Fe(HMDS)2 fragment. Treatment of 5 with 1 molar equiv of methyl triflate (MeOTf) led to the isolation and structural elucidation of the neutral abnormal NHC (aNHC) tricoordinate iron complex [CH3C{[N(2,6-iPr2C6H3)]2CHCFe(HMDS)2}] (6) with the subsequent elimination of NaOTf, disclosing the selectivity of complex 5 to react with this electrophile via its C2 position, leaving its Fe-C4 and Fe-N bonds intact. The magnetic susceptibility properties of compounds 1-6 have been examined. This study revealed a drastic change of magnetic susceptibility in replacing a pure σ donor from an idealized trigonal coordination environment by an NHC π donating character
Implementation and Simulation Results using Autonomous Aerobraking Development Software
An Autonomous Aerobraking software system is currently under development with support from the NASA Engineering and Safety Center (NESC) that would move typically ground-based operations functions to onboard an aerobraking spacecraft, reducing mission risk and mission cost. The suite of software that will enable autonomous aerobraking is the Autonomous Aerobraking Development Software (AADS) and consists of an ephemeris model, onboard atmosphere estimator, temperature and loads prediction, and a maneuver calculation. The software calculates the maneuver time, magnitude and direction commands to maintain the spacecraft periapsis parameters within design structural load and/or thermal constraints. The AADS is currently tested in simulations at Mars, with plans to also evaluate feasibility and performance at Venus and Titan
Autonomous Aerobraking Development Software: Phase One Performance Analysis at Mars, Venus, and Titan
When entering orbit about a planet or moon with an appreciable atmosphere, instead of using only the propulsion system to insert the spacecraft into its desired orbit, aerodynamic drag can be used after the initial orbit insertion to further decelerate the spacecraft. Several past NASA missions have used this aerobraking technique to reduce the fuel required to deliver a spacecraft into a desired orbit. Aerobraking was first demonstrated at Venus with Magellan in 1993 and then was used to achieve the science orbit of three Mars orbiters: Mars Global Surveyor in 1997, Mars Odyssey in 2001, and Mars Reconnaissance Orbiter in 2006. Although aerobraking itself reduces the propellant required to reach a final low period orbit, it does so at the expense of additional mission time to accommodate the aerobraking operations phase (typically 3-6 months), a large mission operations staff, and significant Deep Space Network (DSN) coverage. By automating ground based tasks and analyses associated with aerobraking and moving these onboard the spacecraft, a flight project could save millions of dollars in operations staffing and DSN costs (Ref. 1)
Modelling pellet flow in single extrusion with DEM
Plasticating single-screw extrusion involves the continuous conversion of loose solid
pellets into a pressurized homogeneous melt that is pumped through a shaping tool. Traditional
analyses of the solids conveying stage assume the movement of an elastic solid plug at a fixed
speed. However, not only the corresponding predictions fail considerably, but it is also well
known that, at least in the initial screw turns, the flow of loose individual pellets takes place.
This study follows previous efforts to predict the characteristics of such a flow using the discrete
element method. The model considers the development of normal and tangential forces resulting
from the inelastic collisions between the pellets and between them and the neighbouring metallic
surfaces. The algorithm proposed here is shown to be capable of capturing detailed features of the
granular flow. The predictions of velocities in the cross- and down-channel directions and of the
coordination number are in good agreement with equivalent reported results. The effect of pellet
size on the flow features is also discussed
Effects of thermal fluctuation and the receptor-receptor interaction in bacterial chemotactic signalling and adaptation
Bacterial chemotaxis is controlled by the conformational changes of the
receptors, in response to the change of the ambient chemical concentration. In
a statistical mechanical approach, the signalling due to the conformational
changes is a thermodynamic average quantity, dependent on the temperature and
the total energy of the system, including both ligand-receptor interaction and
receptor-receptor interaction. This physical theory suggests to biology a new
understanding of cooperation in ligand binding and receptor signalling
problems. How much experimental support of this approach can be obtained from
the currently available data? What are the parameter values? What is the
practical information for experiments? Here we make comparisons between the
theory and recent experimental results. Although currently comparisons can only
be semi-quantitative or qualitative, consistency is clearly shown. The theory
also helps to sort a variety of data.Comment: 26 pages, revtex. Journal version. Analysis on another set of data on
adaptation time is adde
Organisational participation and women - an attitude problem?
Employee participation is a dynamic and contested area of organisational behaviour, attracting continuing academic, practitioner and policy interest and debate. This chapter focuses on organisational participation and women
How large are the level sets of the Takagi function?
Let T be Takagi's continuous but nowhere-differentiable function. This paper
considers the size of the level sets of T both from a probabilistic point of
view and from the perspective of Baire category. We first give more elementary
proofs of three recently published results. The first, due to Z. Buczolich,
states that almost all level sets (with respect to Lebesgue measure on the
range of T) are finite. The second, due to J. Lagarias and Z. Maddock, states
that the average number of points in a level set is infinite. The third result,
also due to Lagarias and Maddock, states that the average number of local level
sets contained in a level set is 3/2. In the second part of the paper it is
shown that, in contrast to the above results, the set of ordinates y with
uncountably infinite level sets is residual, and a fairly explicit description
of this set is given. The paper also gives a negative answer to a question of
Lagarias and Maddock by showing that most level sets (in the sense of Baire
category) contain infinitely many local level sets, and that a continuum of
level sets even contain uncountably many local level sets. Finally, several of
the main results are extended to a version of T with arbitrary signs in the
summands.Comment: Added a new Section 5 with generalization of the main results; some
new and corrected proofs of the old material; 29 pages, 3 figure
Advances in POST2 End-to-End Descent and Landing Simulation for the ALHAT Project
Program to Optimize Simulated Trajectories II (POST2) is used as a basis for an end-to-end descent and landing trajectory simulation that is essential in determining design and integration capability and system performance of the lunar descent and landing system and environment models for the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. The POST2 simulation provides a six degree-of-freedom capability necessary to test, design and operate a descent and landing system for successful lunar landing. This paper presents advances in the development and model-implementation of the POST2 simulation, as well as preliminary system performance analysis, used for the testing and evaluation of ALHAT project system models
- …
