23 research outputs found

    A regionally informed abundance index for supporting integrative analyses across butterfly monitoring schemes

    Get PDF
    1. The rapid expansion of systematic monitoring schemes necessitates robust methods to reliably assess species' status and trends. Insect monitoring poses a challenge where there are strong seasonal patterns, requiring repeated counts to reliably assess abundance. Butterfly monitoring schemes (BMSs) operate in an increasing number of countries with broadly the same methodology, yet they differ in their observation frequency and in the methods used to compute annual abundance indices. 2. Using simulated and observed data, we performed an extensive comparison of two approaches used to derive abundance indices from count data collected via BMS, under a range of sampling frequencies. Linear interpolation is most commonly used to estimate abundance indices from seasonal count series. A second method, hereafter the regional generalized additive model (GAM), fits a GAM to repeated counts within sites across a climatic region. For the two methods, we estimated bias in abundance indices and the statistical power for detecting trends, given different proportions of missing counts. We also compared the accuracy of trend estimates using systematically degraded observed counts of the Gatekeeper Pyronia tithonus (Linnaeus 1767). 3. The regional GAM method generally outperforms the linear interpolation method. When the proportion of missing counts increased beyond 50%, indices derived via the linear interpolation method showed substantially higher estimation error as well as clear biases, in comparison to the regional GAM method. The regional GAM method also showed higher power to detect trends when the proportion of missing counts was substantial. 4. Synthesis and applications. Monitoring offers invaluable data to support conservation policy and management, but requires robust analysis approaches and guidance for new and expanding schemes. Based on our findings, we recommend the regional generalized additive model approach when conducting integrative analyses across schemes, or when analysing scheme data with reduced sampling efforts. This method enables existing schemes to be expanded or new schemes to be developed with reduced within-year sampling frequency, as well as affording options to adapt protocols to more efficiently assess species status and trends across large geographical scales

    Assessment of genetic diversity among seed transfer zones for multiple grassland plant species across Germany

    Get PDF
    Species diversity and intraspecific genetic diversity play a critical role in conservation and restoration of grassland ecosystems. To maintain regional adaptations of native wild plants, seeds for restoration projects are produced regionally. The delineation of regions is organised by seed transfer zones (STZs). Generalised STZs that apply uniformly to many species have been established in several European countries. Ideally, generalised STZs should be based on comprehensive data of intraspecific genetic and phenotypic diversity for a larger number of species. However, such underlying data is missing. The project RegioDiv aims to fill this gap and generate empirical data on genetic variation of multiple grassland plant species across Germany. Here we describe the driving principles and main methods of the project. A total of 33 species were collected at an average density of ∼1 sample/1000 km2 across the 22 existing STZs, and a total of 11,976 samples were genotyped with SNP markers. The analysis of genetic population structure included cluster analysis and analyses of isolation-by-distance and isolation-by-environment. An exemplary within-species analysis for Agrostis capillaris, a widespread grass, revealed five intraspecific genetic clusters, distributed in spatially coherent ranges that did not fully match the STZs. Most of the STZs differed genetically following a pattern of isolation-by-distance and isolation-by-environment. In an across-species analysis, genetic differentiation was affected by mating system and ploidy. Outcrossed and polyploid species were less differentiated than self-compatible and diploid species. However, genetic differentiation did not significantly differ between grasses and herbs, highlighting the variability among species within these groups. The dataset of the RegioDiv project will advance both basic and applied research on genetic variation of grassland plant species. The results will allow the assessment of the current German STZ system and guide potential improvements

    EuropaBON EBV workflow templates

    Get PDF
    The information provided here represents the EBV workflow templates collected during the EuropaBON online workshop on Essential Biodiversity Variable (EBV) workflows from 22–24 February 2023. The templates were designed to capture comprehensive descriptions about the three workflow components (data collection and sampling, data integration, and modelling) that are typical for generating EBVs. Recognising the potential value of those EBV templates for European biodiversity monitoring, our objective is to share them for enhancing transparency, knowledge exchange and collaboration, and promoting the operationalisation of EBVs across Europe. EuropaBON (https://europabon.org/) is a Horizon 2020 research and innovation action funded by the European Commission that seeks to co-design a European Biodiversity Observation Network. This network aims to bridge the gap between the biodiversity data needs of policy-makers and authorities on the one hand and the existing reporting streams and available data sources on the other hand, considering both present obligations and forthcoming policy needs. Essential Biodiversity Variables (EBVs) are a central concept of EuropaBON as they provide a standardised framework for biodiversity monitoring and reporting. In 2023, EuropaBON had identified 70 EBVs (Junker et al., 2023) that are policy-relevant for the EU, and measurable with available and existing technologies and with a proven track record of feasibility in ongoing initiatives. EBVs require workflows to process the raw data (primary observations) through data integration and modelling into spatially-explicit EBV data products (Kissling et al., 2018; Schmeller et al., 2017). These workflows can be broken down into three main components (data collection and sampling, data integration, and modelling), with additional aspects of data interoperability and IT infrastructure being recognised as crucial for transnational data streams (Kissling & Lumbierres, 2023). To capture information about the EBV workflows, an online workshop was held on 22–24 February 2023 with 520 registered participants from 49 countries, covering a large range of expertise (Lumbierres & Kissling, 2023). Participants contributed information on EBV workflow components and advanced monitoring techniques, discussed initiatives, and identified tools and requirements for implementing 70 proposed EBVs. The information from the workshop participants was collected through pre-defined EBV workflow templates (provided as Google Docs). Templates were organised into rows representing the workflow components (‘Data collection and sampling’, ‘Data integration’, and ‘Modelling’) and columns reflecting the levels of maturity ('Current initiatives', 'Emerging tools and projects' or 'Future needs'). Prior to the workshop, some information on existing workflows was pre-filled based on previous EuropaBON deliverables, namely an assessment of the current biodiversity monitoring gaps in the EU (Santana et al., 2023) and an assessment of current EU monitoring workflows and bottlenecks (Morán-Ordóñez et al., 2023). After the workshop, the EBV workflow templates were processed to ensure the accuracy and relevance of the information. Each listed initiative was verified to be part of an active biodiversity monitoring scheme and pertinent to the specific EBV under consideration, cross-referencing with the initiative’s websites and other data collected by the EuropaBON deliverables (Morán-Ordóñez et al., 2023; Santana et al., 2023). Moreover, we ensured correct alignment of each initiative and listed requirements and needs with the appropriate workflow components and maturity levels. The EBV workflow templates provide insights into the current biodiversity monitoring landscape in Europe and how EBV production could be operationalized at the EU level. They offer detailed information about ongoing initiatives and projects, methodologies, and technologies that can be used to generate EBVs at a continental scale. Nevertheless, it is important to note that they do not encompass an exhaustive list of all ongoing or proposed initiatives of biodiversity monitoring in all member states of the EU. It is suggested to use them as a starting point and baseline for the further development of EBVs in a European context
    corecore