312 research outputs found
New Results on e+e- Line Emission in U+Ta Collisions
We present new results obtained from a series of follow-up e+e- coincidence
measurements in heavy-ion collisions, utilizing an improved experimental set-up
at the double-Orange beta-spectrometer of GSI. The collision system U+Ta was
reinvestigated in three independent runs at beam energies in the range
(6.0-6.4)xA MeV and different target thicknesses, with the objective to
reproduce a narrow sum-energy e+e- line at ~635 keV observed previously in this
collision system. At improved statistical accuracy, the line could not be found
in these new data. For the ''fission'' scenario, an upper limit (1 sigma) on
its production probability per collision of 1.3x10^{-8} can be set which has to
be compared to the previously reported value of [4.9 +- 0.8 (stat.) +- 1.0
(syst)]x10^{-7}. In the light of the new results, a reanalysis of the old data
shows that the continuous part of the spectrum at the line position is
significantly higher than previously assumed, thus reducing the production
probability of the line by a factor of two and its statistical significance to
< 3.4sigma.Comment: 15 pages, standard LaTeX with 3 included PS figures; Submitted to
Physics Letters
First Energy and Angle differential Measurements of e^+e^- -pairs emitted by Internal Pair Conversion of excited Heavy Nuclei
We present the first energy and angle resolved measurements of e+e- pairs
emitted from heavy nuclei (Z>=40) at rest by internal pair conversion (IPC) of
transitions with energies of less than 2MeV as well as recent theoretical
results using the DWBA method, which takes full account of relativistic
effects, magnetic substates and finite size of the nucleus. The 1.76MeV E0
transition in Zr90 (Sr source) and the 1.77MeV M1 transition in Pb207 (Bi
source) have been investigated experimentally using the essentially improved
set-up at the double-ORANGE beta-spectrometer of GSI. The measurements prove
the capability of the setup to cleanly identify the IPC pairs in the presence
of five orders of magnitude higher beta- and gamma background from the same
source and to yield essentially background-free sum spectra despite the large
background. Using the ability of the ORANGE setup to directly determine the
opening angle of the e+e- pairs, the angular correlation of the emitted pairs
was measured. In the Zr90 case the correlation could be deduced for a wide
range of energy differences of the pairs. The Zr90 results are in good
agreement with recent theory. The angular correlation deduced for the M1
transition in Pb207 is in strong disagreement with theoretical predictions
derived within the Born approximation and shows almost isotropic character.
This is again in agreement with the new theoretical results.Comment: LaTeX, 28 pages incl. 10 PS figures; Accepted by Z.Phys.
- …
