9,020 research outputs found

    Soluble acidic species in air and snow at Summit, Greenland

    Get PDF
    Simultaneous measurements of the concentrations of soluble acidic species in the gas, aerosol and snow phases at Summit, Greenland were made during summer 1993. Mean concentrations of gas phase HCOOH, CH3COOH, and HNO3 (49±28, 32±17 and 0.9±0.6 nmol m−3 STP, respectively) exceeded the concentrations of aerosol-associated HCOO−, CH3COO−, and NO3−by 1–3 orders of magnitude. On average, SO2 concentrations (0.9±0.6 nmol m−3 STP) were approximately 1/3 those of aerosol SO4=, but this ratio varied widely due largely to changes in the concentration of aerosol SO4=. Concentrations of aerosol SO4= plus SO2 consistently exceeded the sum of aerosol NO3− plus HNO3, yet NO3− was 3–20 times as abundant as SO4=in surface snow. Gas phase concentrations of HCOOH and CH3COOH at Summit were unexpectedly as large as those previously reported for several high latitude continental sites. However, carboxylate concentrations in snow were lower than those of SO4=. Our observation of post-depositional loss of these carboxylic acids within hours after a snowfall must partially explain the low concentrations found in snow. The relative abundance of soluble acids in summer snow at Summit was opposite of that in the overlying atmosphere. Our results highlight the need for improved understanding of the processes controlling transfer of soluble atmospheric species between air and snow

    A large terrestrial source of methyl iodide

    Get PDF
    We have identified terrestrial sources of methyl iodide (CH3I) and assessed their importance in its atmospheric budget using a synthesis of field observations. Measurements include those from NASA DC‐8 research flights over the United States and the North Atlantic, the AIRMAP long‐term ground‐observing network in New England, and a field campaign at Duke Forest, North Carolina. We found an average CH3I flux of ∼2,700 ng m−2 d−1 to the atmosphere from midlatitude vegetation and soils, a value similar in magnitude to previous estimates of the oceanic source strength. The large‐scale aircraft measurements of vertical profiles over the continental U.S. showed CH3I‐mixing ratios comparable to and greater than those observed over the North Atlantic. Overall, midlatitude terrestrial biomes appear to contribute 33 Gg yr−1 to the CH3I global budget

    Creating exotic condensates via quantum-phase-revival dynamics in engineered lattice potentials

    Full text link
    In the field of ultracold atoms in optical lattices a plethora of phenomena governed by the hopping energy JJ and the interaction energy UU have been studied in recent years. However, the trapping potential typically present in these systems sets another energy scale and the effects of the corresponding time scale on the quantum dynamics have rarely been considered. Here we study the quantum collapse and revival of a lattice Bose-Einstein condensate (BEC) in an arbitrary spatial potential, focusing on the special case of harmonic confinement. Analyzing the time evolution of the single-particle density matrix, we show that the physics arising at the (temporally) recurrent quantum phase revivals is essentially captured by an effective single particle theory. This opens the possibility to prepare exotic non-equilibrium condensate states with a large degree of freedom by engineering the underlying spatial lattice potential.Comment: 9 pages, 6 figure

    A causal look into the quantum Talbot effect

    Get PDF
    A well-known phenomenon in both optics and quantum mechanics is the so-called Talbot effect. This near field interference effect arises when infinitely periodic diffracting structures or gratings are illuminated by highly coherent light or particle beams. Typical diffraction patterns known as quantum carpets are then observed. Here the authors provide an insightful picture of this nonlocal phenomenon as well as its classical limit in terms of Bohmian mechanics, also showing the causal reasons and conditions that explain its appearance. As an illustration, theoretical results obtained from diffraction of thermal He atoms by both N-slit arrays and weak corrugated surfaces are analyzed and discussed. Moreover, the authors also explain in terms of what they call the Talbot-Beeby effect how realistic interaction potentials induce shifts and distortions in the corresponding quantum carpets.Comment: 12 pages, 6 figure

    An estimate of the uptake of atmospheric methyl bromide by agricultural soils

    Get PDF
    Published estimates of removal of atmospheric methyl bromide (CH3Br) by agricultural soils are 2.7 Gg yr−1 (Gg = 109 g) [Shorter et al., 1995] and 65.8 Gg yr−1 [Serça et al., 1998]. The Serça et al. estimate, if correct, would suggest that the current value for total removal of atmospheric CH3Br by all sinks of 206 Gg yr−1 (based on Shorter et al., 1995) would be 30% too low. We have calculated a new rate of global agricultural soil uptake of atmospheric CH3Br from a larger sampling of cultivated soils collected from 40 sites located in the United States, Costa Rica, and Germany. First order reaction rates were measured during static laboratory incubations. These data were combined with uptake measurements we reported earlier based on field and laboratory experiments [Shorter et al. 1995]. Tropical (10.2°–10.4°N) and northern (45°–61°N) soils averaged lower reaction rate constants than temperate soils probably due to differing physical and chemical characteristics as well as microbial populations. Our revised global estimate for the uptake of ambient CH3Br by cultivated soils is 7.47±0.63 Gg yr−1, almost three times the value that we reported in 1995

    Chemical characteristics of air from different source regions during the second Pacific Exploratory Mission in the Tropics (PEM-Tropics B)

    Get PDF
    Ten-day backward trajectories are used to determine the origins of air parcels arriving at locations of airborne DC-8 chemical measurements during NASA's second Pacific Exploratory Mission in the Tropics B that was conducted during February-April 1999. Chemical data at sites where the trajectories had a common geographical origin and transport history are grouped together, and statistical measures of chemical characteristics are computed. Temporal changes in potential temperature are used to determine whether trajectories experienced a significant convective influence during the 10-day period. Trajectories describing the aged marine Southern Hemispheric category remain over the South Pacific Ocean during the 10-day period, and their corresponding chemical signature indicates very clean air. The category aged marine air in the Northern Hemisphere is found to be somewhat dirtier. Subdividing its trajectories based on the direction from which the air had traveled is found to be important in explaining the various chemical signatures. Similarly, long-range northern hemispheric trajectories passing over Asia are subdivided depending on whether they had followed a mostly zonal path, had originated near the Indian Ocean, or had originated near Central or South America and subsequently experienced a stratospheric influence. Results show that the chemical signatures of these subcategories are different from each other. The chemical signature of the southern hemispheric long-range transport category apparently exhibits the effects of pollution from Australia, southern Africa, and South America. Parcels originating over Central and northern South America are found to contain the strongest pollution signature of all categories, due to biomass burning and other sources. The convective category exhibits enhanced values of nitrogen species, probably due to emissions from lightning associated with the convection. Values of various species, including peroxides and acids, confirm that parcels were influenced by the removal of soluble gas and particle species due to precipitation. Finally, current results are compared with those from the first PEM-Tropics mission that was conducted in the same region during the southern hemispheric dry season (August-October 1996) when extensive biomass burning occurred. Results show that air samples during PEM-Tropics B are considerably cleaner than those of its dry season counterpart. Copyright 2001 by the American Geophysical Union

    An electron Talbot interferometer

    Full text link
    The Talbot effect, in which a wave imprinted with transverse periodicity reconstructs itself at regular intervals, is a diffraction phenomenon that occurs in many physical systems. Here we present the first observation of the Talbot effect for electron de Broglie waves behind a nanofabricated transmission grating. This was thought to be difficult because of Coulomb interactions between electrons and nanostructure gratings, yet we were able to map out the entire near-field interference pattern, the "Talbot carpet", behind a grating. We did this using a Talbot interferometer, in which Talbot interference fringes from one grating are moire'-filtered by a 2nd grating. This arrangement has served for optical, X-ray, and atom interferometry, but never before for electrons. Talbot interferometers are particularly sensitive to distortions of the incident wavefronts, and to illustrate this we used our Talbot interferometer to measure the wavefront curvature of a weakly focused electron beam. Here we report how this wavefront curvature demagnified the Talbot revivals, and we discuss applications for electron Talbot interferometers.Comment: 5 pages, 5 figures, updated version with abstrac
    corecore