9,020 research outputs found
Soluble acidic species in air and snow at Summit, Greenland
Simultaneous measurements of the concentrations of soluble acidic species in the gas, aerosol and snow phases at Summit, Greenland were made during summer 1993. Mean concentrations of gas phase HCOOH, CH3COOH, and HNO3 (49±28, 32±17 and 0.9±0.6 nmol m−3 STP, respectively) exceeded the concentrations of aerosol-associated HCOO−, CH3COO−, and NO3−by 1–3 orders of magnitude. On average, SO2 concentrations (0.9±0.6 nmol m−3 STP) were approximately 1/3 those of aerosol SO4=, but this ratio varied widely due largely to changes in the concentration of aerosol SO4=. Concentrations of aerosol SO4= plus SO2 consistently exceeded the sum of aerosol NO3− plus HNO3, yet NO3− was 3–20 times as abundant as SO4=in surface snow. Gas phase concentrations of HCOOH and CH3COOH at Summit were unexpectedly as large as those previously reported for several high latitude continental sites. However, carboxylate concentrations in snow were lower than those of SO4=. Our observation of post-depositional loss of these carboxylic acids within hours after a snowfall must partially explain the low concentrations found in snow. The relative abundance of soluble acids in summer snow at Summit was opposite of that in the overlying atmosphere. Our results highlight the need for improved understanding of the processes controlling transfer of soluble atmospheric species between air and snow
Recommended from our members
A large terrestrial source of methyl iodide
We have identified terrestrial sources of methyl iodide (CH3I) and assessed their importance in its atmospheric budget using a synthesis of field observations. Measurements include those from NASA DC-8 research flights over the United States and the North Atlantic, the AIRMAP long-term ground-observing network in New England, and a field campaign at Duke Forest, North Carolina. We found an average CH3I flux of ∼2,700 ng m-2 d-1 to the atmosphere from midlatitude vegetation and soils, a value similar in magnitude to previous estimates of the oceanic source strength. The large-scale aircraft measurements of vertical profiles over the continental U.S. showed CH3I-mixing ratios comparable to and greater than those observed over the North Atlantic. Overall, midlatitude terrestrial biomes appear to contribute 33 Gg yr-1 to the CH3I global budget. Copyright 2007 by the American Geophysical Union
A large terrestrial source of methyl iodide
We have identified terrestrial sources of methyl iodide (CH3I) and assessed their importance in its atmospheric budget using a synthesis of field observations. Measurements include those from NASA DC‐8 research flights over the United States and the North Atlantic, the AIRMAP long‐term ground‐observing network in New England, and a field campaign at Duke Forest, North Carolina. We found an average CH3I flux of ∼2,700 ng m−2 d−1 to the atmosphere from midlatitude vegetation and soils, a value similar in magnitude to previous estimates of the oceanic source strength. The large‐scale aircraft measurements of vertical profiles over the continental U.S. showed CH3I‐mixing ratios comparable to and greater than those observed over the North Atlantic. Overall, midlatitude terrestrial biomes appear to contribute 33 Gg yr−1 to the CH3I global budget
Creating exotic condensates via quantum-phase-revival dynamics in engineered lattice potentials
In the field of ultracold atoms in optical lattices a plethora of phenomena
governed by the hopping energy and the interaction energy have been
studied in recent years. However, the trapping potential typically present in
these systems sets another energy scale and the effects of the corresponding
time scale on the quantum dynamics have rarely been considered. Here we study
the quantum collapse and revival of a lattice Bose-Einstein condensate (BEC) in
an arbitrary spatial potential, focusing on the special case of harmonic
confinement. Analyzing the time evolution of the single-particle density
matrix, we show that the physics arising at the (temporally) recurrent quantum
phase revivals is essentially captured by an effective single particle theory.
This opens the possibility to prepare exotic non-equilibrium condensate states
with a large degree of freedom by engineering the underlying spatial lattice
potential.Comment: 9 pages, 6 figure
A causal look into the quantum Talbot effect
A well-known phenomenon in both optics and quantum mechanics is the so-called
Talbot effect. This near field interference effect arises when infinitely
periodic diffracting structures or gratings are illuminated by highly coherent
light or particle beams. Typical diffraction patterns known as quantum carpets
are then observed. Here the authors provide an insightful picture of this
nonlocal phenomenon as well as its classical limit in terms of Bohmian
mechanics, also showing the causal reasons and conditions that explain its
appearance. As an illustration, theoretical results obtained from diffraction
of thermal He atoms by both N-slit arrays and weak corrugated surfaces are
analyzed and discussed. Moreover, the authors also explain in terms of what
they call the Talbot-Beeby effect how realistic interaction potentials induce
shifts and distortions in the corresponding quantum carpets.Comment: 12 pages, 6 figure
An estimate of the uptake of atmospheric methyl bromide by agricultural soils
Published estimates of removal of atmospheric methyl bromide (CH3Br) by agricultural soils are 2.7 Gg yr−1 (Gg = 109 g) [Shorter et al., 1995] and 65.8 Gg yr−1 [Serça et al., 1998]. The Serça et al. estimate, if correct, would suggest that the current value for total removal of atmospheric CH3Br by all sinks of 206 Gg yr−1 (based on Shorter et al., 1995) would be 30% too low. We have calculated a new rate of global agricultural soil uptake of atmospheric CH3Br from a larger sampling of cultivated soils collected from 40 sites located in the United States, Costa Rica, and Germany. First order reaction rates were measured during static laboratory incubations. These data were combined with uptake measurements we reported earlier based on field and laboratory experiments [Shorter et al. 1995]. Tropical (10.2°–10.4°N) and northern (45°–61°N) soils averaged lower reaction rate constants than temperate soils probably due to differing physical and chemical characteristics as well as microbial populations. Our revised global estimate for the uptake of ambient CH3Br by cultivated soils is 7.47±0.63 Gg yr−1, almost three times the value that we reported in 1995
Chemical characteristics of air from different source regions during the second Pacific Exploratory Mission in the Tropics (PEM-Tropics B)
Ten-day backward trajectories are used to determine the origins of air parcels arriving at locations of airborne DC-8 chemical measurements during NASA's second Pacific Exploratory Mission in the Tropics B that was conducted during February-April 1999. Chemical data at sites where the trajectories had a common geographical origin and transport history are grouped together, and statistical measures of chemical characteristics are computed. Temporal changes in potential temperature are used to determine whether trajectories experienced a significant convective influence during the 10-day period. Trajectories describing the aged marine Southern Hemispheric category remain over the South Pacific Ocean during the 10-day period, and their corresponding chemical signature indicates very clean air. The category aged marine air in the Northern Hemisphere is found to be somewhat dirtier. Subdividing its trajectories based on the direction from which the air had traveled is found to be important in explaining the various chemical signatures. Similarly, long-range northern hemispheric trajectories passing over Asia are subdivided depending on whether they had followed a mostly zonal path, had originated near the Indian Ocean, or had originated near Central or South America and subsequently experienced a stratospheric influence. Results show that the chemical signatures of these subcategories are different from each other. The chemical signature of the southern hemispheric long-range transport category apparently exhibits the effects of pollution from Australia, southern Africa, and South America. Parcels originating over Central and northern South America are found to contain the strongest pollution signature of all categories, due to biomass burning and other sources. The convective category exhibits enhanced values of nitrogen species, probably due to emissions from lightning associated with the convection. Values of various species, including peroxides and acids, confirm that parcels were influenced by the removal of soluble gas and particle species due to precipitation. Finally, current results are compared with those from the first PEM-Tropics mission that was conducted in the same region during the southern hemispheric dry season (August-October 1996) when extensive biomass burning occurred. Results show that air samples during PEM-Tropics B are considerably cleaner than those of its dry season counterpart. Copyright 2001 by the American Geophysical Union
An electron Talbot interferometer
The Talbot effect, in which a wave imprinted with transverse periodicity
reconstructs itself at regular intervals, is a diffraction phenomenon that
occurs in many physical systems. Here we present the first observation of the
Talbot effect for electron de Broglie waves behind a nanofabricated
transmission grating. This was thought to be difficult because of Coulomb
interactions between electrons and nanostructure gratings, yet we were able to
map out the entire near-field interference pattern, the "Talbot carpet", behind
a grating. We did this using a Talbot interferometer, in which Talbot
interference fringes from one grating are moire'-filtered by a 2nd grating.
This arrangement has served for optical, X-ray, and atom interferometry, but
never before for electrons. Talbot interferometers are particularly sensitive
to distortions of the incident wavefronts, and to illustrate this we used our
Talbot interferometer to measure the wavefront curvature of a weakly focused
electron beam. Here we report how this wavefront curvature demagnified the
Talbot revivals, and we discuss applications for electron Talbot
interferometers.Comment: 5 pages, 5 figures, updated version with abstrac
- …
