944 research outputs found
Selection-rule blockade and rectification in quantum heat transport
We introduce a new thermal transport phenomenon, a unidirectional
selection-rule blockade, and show how it produces unprecedented rectification
of bosonic heat flow through molecular or mesoscopic quantum systems.
Rectification arises from the quantization of energy levels of the conduction
element and selection rules of reservoir coupling operators. The simplest
system exhibiting the selection-rule blockade is an appropriately coupled
three-level system, providing a candidate for a high-performance heat diode. We
present an analytical treatment of the transport problem and discuss how the
phenomenon generalizes to multilevel systems.Comment: 4 pages, 3 Fig
Photon heat transport in low-dimensional nanostructures
At low temperatures when the phonon modes are effectively frozen, photon
transport is the dominating mechanism of thermal relaxation in metallic
systems. Starting from a microscopic many-body Hamiltonian, we develop a
nonequilibrium Green's function method to study energy transport by photons in
nanostructures. A formally exact expression for the energy current between a
metallic island and a one-dimensional electromagnetic field is obtained. From
this expression we derive the quantized thermal conductance as well as show how
the results can be generalized to nonequilibrium situations. Generally, the
frequency-dependent current noise of the island electrons determines the energy
transfer rate.Comment: 4 pages, 3 Fig
State-dependent impedance of a strongly coupled oscillator-qubit system
We investigate the measurements of two-state quantum systems (qubits) at
finite temperatures using a resonant harmonic oscillator as a quantum probe.
The reduced density matrix and oscillator correlators are calculated by a
scheme combining numerical methods with an analytical perturbation theory.
Correlators provide us information about the system impedance, which depends on
the qubit state. We show in detail how this property can be exploited in the
qubit measurement.Comment: 8 pages, 16 image
Functional characterization and expression of GASCL1 and GASCL2, two anther-specific chalcone synthase like enzymes from Gerbera hybrida
The chalcone synthase superfamily consists of type III polyketidesynthases (PKSs), enzymes responsible for producing plant secondary metabolites with various biological and pharmacological activities. Anther-specific chalcone synthase-like enzymes (ASCLs) represent an ancient group of type III PKSs involved in the biosynthesis of sporopollenin, the main component of the exine layer of moss spores and mature pollen grains of seed plants. In the latter, ASCL proteins are localized in the tapetal cells of the anther where they participate in sporopollenin biosynthesis and exine formation within the locule. It is thought that the enzymes responsible for sporopollenin biosynthesis are highly conserved, and thus far, each angiosperm species with a genome sequenced has possessed two ASCL genes, which in Arabidopsis thaliana are PKSA and PKSB. The Gerbera hybrida (gerbera) PKS protein family consists of three chalcone synthases (GCHS1, GCHS3 and GCHS4) and three 2-pyrone synthases (G2PS1, G2PS2 and G2PS3). In previous studies we have demonstrated the functions of chalcone synthases in flavonoid biosynthesis, and the involvement of 2-pyrone synthases in the biosynthesis of antimicrobial compounds found in gerbera. In this study we expanded the gerbera PKS-family by functionally characterizing two gerbera ASCL proteins. In vitro enzymatic studies using purified recombinant proteins showed that both GASCL1 and GASCL2 were able to use medium and long-chain acyl-CoA starters and perform two to three condensation reactions of malonyl-CoA to produce tri- and tetraketide 2-pyrones, usually referred to as alpha-pyrones in sporopollenin literature. Both GASCL1 and GASCL2 genes were expressed only floral organs, with most expression observed in anthers. In the anthers, transcripts of both genes showed strict tapetum-specific localization. (C) 2016 Elsevier Ltd. All rights reserved.Peer reviewe
Virus-induced gene silencing for Asteraceae-a reverse genetics approach for functional genomics in Gerbera hybrida
Peer reviewe
Role of spatial anisotropy in design storm generation: Experiment and interpretation
Rainfall accumulation depths over a given area are strongly dependent on the shape of the storm together with its direction of advection. A method to produce design storms exhibiting anisotropic spatial scaling is presented by combining a state-of-the-art stochastic rainfall generator STEPS with the linear generalized scale invariance (GSI) notation. The enhanced model is used to create ensembles of design storms based on an extreme storm with a distinct rainband shape observed in Melbourne, Australia. Design storms are generated both with and without accounting for anisotropy. Effect of anisotropy on precipitation characteristics is studied using the entire region covered by the radar (radar scale) and at a significantly smaller catchment scale. A rainfall-runoff model is applied to route the rainfall through the catchment into streamflow. Accounting for anisotropy allows for a more realistic description of precipitation features at the radar scale. At the catchment scale, anisotropy increases the probability of high rainfall accumulations, which translates into greater flood volumes. No discernible difference was observed in streamflow characteristics after controlling for the accumulation over the catchment. This could be explained by a lower importance of anisotropy relative to other factors affecting streamflow generation, and by the difficulties in creating representative rainfall temporal properties at the catchment scale when the radar scale is used for model calibration. The proposed method provides a tool to create ensembles of design storms when the anisotropic shape of the fields is of importance.Peer reviewe
Scandinavian perspectives on plant gene technology: applications, policies and progress
Plant research and breeding has a long and successful history in the Scandinavian countries, Denmark, Finland, Norway and Sweden. Researchers in the region have been early in adopting plant gene technologies as they developed. This review gives a background, as well as discuss the current and future progress of plant gene technology in these four countries. Country-specific details of the regulation of genetically modified plants are described, as well as similarities and differences in the approach to regulation of novel genome-editing techniques. Also, the development of a sustainable bioeconomy may encompass the application of plant gene technology and we discuss whether or not this is reflected in current associated national strategies. In addition, country-specific information about the opinion of the public and other stakeholders on plant gene technology is presented, together with a country-wise political comparison and a discussion of the potential reciprocal influence between public opinion and the political process of policy development. The Scandinavian region is unique in several aspects, such as climate and certain agriculturally related regulations, and at the same time the region is vulnerable to changes in plant breeding investments due to the relatively small market sizes. It is therefore important to discuss the role and regulation of innovative solutions in Scandinavian plant research and breeding.Peer reviewe
Strong Tunneling in Double-Island Structures
We study the electron transport through a system of two low-capacitance metal
islands connected in series between two electrodes. The work is motivated in
part by experiments on semiconducting double-dots, which show intriguing
effects arising from coherent tunneling of electrons and mixing of the
single-electron states across tunneling barriers. In this article, we show how
coherent tunneling affects metallic systems and leads to a mixing of the
macroscopic charge states across the barriers. We apply a recently formulated
RG approach to examine the linear response of the system with high tunnel
conductances (up to 8e^2/h). In addition we calculate the (second order)
cotunneling contributions to the non-linear conductance. Our main results are
that the peaks in the linear and nonlinear conductance as a function of the
gate voltage are reduced and broadened in an asymmetric way, as well as shifted
in their positions. In the limit where the two islands are coupled weakly to
the electrodes, we compare to theoretical results obtained by Golden and
Halperin and Matveev et al. In the opposite case when the two islands are
coupled more strongly to the leads than to each other, the peaks are found to
shift, in qualitative agreement with the recent prediction of Andrei et al. for
a similar double-dot system which exhibits a phase transition.Comment: 12 page
Upscaling of solar induced chlorophyll fluorescence from leaf to canopy using the DART model and a realistic 3D forest scene
Non peer reviewe
- …
