53,655 research outputs found
Block-block entanglement and quantum phase transitions in one-dimensional extended Hubbard model
In this paper, we study block-block entanglement in the ground state of
one-dimensional extended Hubbard model. Our results show that the phase diagram
derived from the block-block entanglement manifests richer structure than that
of the local (single site) entanglement because it comprises nonlocal
correlation. Besides phases characterized by the charge-density-wave, the
spin-density-wave, and phase-separation, which can be sketched out by the local
entanglement, singlet superconductivity phase could be identified on the
contour map of the block-block entanglement. Scaling analysis shows that behavior of the block-block entanglement may exist in both
non-critical and the critical regions, while some local extremum are induced by
the finite-size effect. We also study the block-block entanglement defined in
the momentum space and discuss its relation to the phase transition from
singlet superconducting state to the charge-density-wave state.Comment: 8 pages, 9 figure
Effective video multicast over wireless internet
With the rapid growth of wireless networks and great success of Internet video, wireless video services are expected to be widely deployed in the near future. As different types of wireless networks are converging into all IP networks, i.e., the Internet, it is important to study video delivery over the wireless Internet. This paper proposes a novel end-system based adaptation protocol calledWireless Hybrid Adaptation Layered Multicast (WHALM) protocol for layered video multicast over wireless Internet. In WHALM the sender dynamically collects bandwidth distribution from the receivers and uses an optimal layer rate allocation mechanism to reduce the mismatches between the coarse-grained layer subscription levels and the heterogeneous and dynamic rate requirements from the receivers, thus maximizing the degree of satisfaction of all the receivers in a multicast session. Based on sampling theory and theory of probability, we reduce the required number of bandwidth feedbacks to a reasonable degree and use a scalable feedback mechanism to control the feedback process practically. WHALM is also tuned to perform well in wireless networks by integrating an end-to-end loss differentiation algorithm (LDA) to differentiate error losses from congestion losses at the receiver side. With a series of simulation experiments over NS platform, WHALM has been proved to be able to greatly improve the degree of satisfaction of all the receivers while avoiding congestion collapse on the wireless Internet
Origin of the pseudogap and its influence on superconducting state
When holes move in the background of strong antiferromagnetic correlation,
two effects with different spatial scale emerge, leading to a much reduced
hopping integral with an additional phase factor. An effective Hamiltonian is
then proposed to investigate the underdoped cuprates. We argue that the
pseudogap is the consequence of dressed hole moving in the antiferromagnetic
background and has nothing to do with the superconductivity. The momentum
distributions of the gap are qualitatively consistent with the recent ARPES
measurements both in the pseudogap and superconducting state. Two thermal
qualities are further calculated to justify our model. A two-gap scenario is
concluded to describe the relation between the two gaps.Comment: 7 pages, 5 figure
Magnetic impurity in the vicinity of a vacancy in bilayer graphene
We use quantum Monte Carlo method to study a magnetic impurity located next
to a vacancy in bilayer graphene with Bernal stacking. Due to the broken
symmetry between two sublattices in bilayer system, there exist two different
types of vacancy induced localized state. We find that the magnetic property of
the adatom located on the adjacent site of the vacancy depends on whether the
vacancy belongs to A or B sublattice. In general, local moment is more strongly
suppressed if the vacancy belongs to the sublattice A when . We
switch the values of the chemical potential and study the basic thermodynamic
quantities and the correlation functions between the magnetic adatom and the
carbon sites.Comment: 3 pages, 4 figures, conferenc
A dimerized spin fluid in a one-dimensional electron system
The ground state of a one-dimensional Hubbard model with a bond-charge
attraction W term at half-filling is investigated by the density matrix
renormalization group method. It is confirmed that the spin gap will be closed
at U>8W. But the long-range bond order wave survives even when the spin gap is
closed. It indicates that the ground state is a novel dimerized spin fluid at
U>8W. By a charge-spin transformation, it is shown that there should be a
dimerized metallic phase at U<-8W. Furthermore, it is found that the Hubbard
interaction U enhances initially the dimerization for a weak bond charge
attraction W whereas it reduces monotonously the dimerization for a stronger
bond charge attraction W.Comment: 10 pages, 3 figure
Ground-state fidelity of Luttinger liquids: A wave functional approach
We use a wave functional approach to calculate the fidelity of ground states
in the Luttinger liquid universality class of one-dimensional gapless quantum
many-body systems. The ground-state wave functionals are discussed using both
the Schrodinger (functional differential equation) formulation and a path
integral formulation. The fidelity between Luttinger liquids with Luttinger
parameters K and K' is found to decay exponentially with system size, and to
obey the symmetry F(K,K')=F(1/K,1/K') as a consequence of a duality in the
bosonization description of Luttinger liquids.Comment: 13 pages, IOP single-column format. Sec. 3 expanded with discussion
of short-distance cut-off. Some typos corrected. Ref. 44 in v2 is now
footnote 2 (moved by copy editor). Published versio
- …
