125 research outputs found

    Poststroke psychosis: a systematic review

    Get PDF
    A preregistered systematic review of poststroke psychosis examining clinical characteristics, prevalence, diagnostic procedures, lesion location, treatments, risk factors and outcome. Neuropsychiatric outcomes following stroke are common and severely impact quality of life. No previous reviews have focused on poststroke psychosis despite clear clinical need. CINAHL, MEDLINE and PsychINFO were searched for studies on poststroke psychosis published between 1975 and 2016. Reviewers independently selected studies for inclusion, extracted data and rated study quality. Out of 2442 references, 76 met inclusion criteria. Average age for poststroke psychosis was 66.6 years with slightly more males than females affected. Delayed onset was common. Neurological presentation was typical for stroke, but a significant minority had otherwise ‘silent strokes’. The most common psychosis was delusional disorder, followed by schizophrenia-like psychosis and mood disorder with psychotic features. Estimated delusion prevalence was 4.67% (95% CI 2.30% to 7.79%) and hallucinations 5.05% (95% CI 1.84% to 9.65%). Twelve-year incidence was 6.7%. No systematic treatment studies were found. Case studies frequently report symptom remission after antipsychotics, but serious concerns about under-representation of poor outcome remain. Lesions were typically right hemisphere, particularly frontal, temporal and parietal regions, and the right caudate nucleus. In general, poststroke psychosis was associated with poor functional outcomes and high mortality. Poor methodological quality of studies was a significant limitation. Psychosis considerably adds to illness burden of stroke. Delayed onset suggests a window for early intervention. Studies on the safety and efficacy of antipsychotics in this population are urgently needed

    AGO6 Functions in RNA-Mediated Transcriptional Gene Silencing in Shoot and Root Meristems in Arabidopsis thaliana

    Get PDF
    RNA-directed DNA methylation (RdDM) is a small interfering RNA (siRNA)-mediated epigenetic modification that contributes to transposon silencing in plants. RdDM requires a complex transcriptional machinery that includes specialized RNA polymerases, named Pol IV and Pol V, as well as chromatin remodelling proteins, transcription factors, RNA binding proteins, and other plant-specific proteins whose functions are not yet clarified. In Arabidopsis thaliana, DICER-LIKE3 and members of the ARGONAUTE4 group of ARGONAUTE (AGO) proteins are involved, respectively, in generating and using 24-nt siRNAs that trigger methylation and transcriptional gene silencing of homologous promoter sequences. AGO4 is the main AGO protein implicated in the RdDM pathway. Here we report the identification of the related AGO6 in a forward genetic screen for mutants defective in RdDM and transcriptional gene silencing in shoot and root apical meristems in Arabidopsis thaliana. The identification of AGO6, and not AGO4, in our screen is consistent with the primary expression of AGO6 in shoot and root growing points

    Differential Expression of miRNAs in Colorectal Cancer: Comparison of Paired Tumor Tissue and Adjacent Normal Mucosa Using High-Throughput Sequencing

    Get PDF
    We present the results of a global study of dysregulated miRNAs in paired samples of normal mucosa and tumor from eight patients with colorectal cancer. Although there is existing data of miRNA contribution to colorectal tumorigenesis, these studies are typically small to medium scale studies of cell lines or non-paired tumor samples. The present study is to our knowledge unique in two respects. Firstly, the normal and adjacent tumor tissue samples are paired, thus taking into account the baseline differences between individuals when testing for differential expression. Secondly, we use high-throughput sequencing, thus enabling a comprehensive survey of all miRNAs expressed in the tissues. We use Illumina sequencing technology to perform sequencing and two different tools to statistically test for differences in read counts per gene between samples: edgeR when using the pair information and DESeq when ignoring this information, i.e., treating tumor and normal samples as independent groups. We identify 37 miRNAs that are significantly dysregulated in both statistical approaches, 19 down-regulated and 18 up-regulated. Some of these miRNAs are previously published as potential regulators in colorectal adenocarcinomas such as miR-1, miR-96 and miR-145. Our comprehensive survey of differentially expressed miRNAs thus confirms some existing findings. We have also discovered 16 dysregulated miRNAs, which to our knowledge have not previously been associated with colorectal carcinogenesis: the following significantly down-regulated miR-490-3p, -628-3p/-5p, -1297, -3151, -3163, -3622a-5p, -3656 and the up-regulated miR-105, -549, -1269, -1827, -3144-3p, -3177, -3180-3p, -4326. Although the study is preliminary with only eight patients included, we believe the results add to the present knowledge on miRNA dysregulation in colorectal carcinogenesis. As such the results would serve as a robust training set for validation of potential biomarkers in a larger cohort study. Finally, we also present data supporting the hypothesis that there are differences in miRNA expression between adenocarcinomas and neuroendocrine tumors of the colon

    Identification and Functional Analysis of Light-Responsive Unique Genes and Gene Family Members in Rice

    Get PDF
    Functional redundancy limits detailed analysis of genes in many organisms. Here, we report a method to efficiently overcome this obstacle by combining gene expression data with analysis of gene-indexed mutants. Using a rice NSF45K oligo-microarray to compare 2-week-old light- and dark-grown rice leaf tissue, we identified 365 genes that showed significant 8-fold or greater induction in the light relative to dark conditions. We then screened collections of rice T-DNA insertional mutants to identify rice lines with mutations in the strongly light-induced genes. From this analysis, we identified 74 different lines comprising two independent mutant lines for each of 37 light-induced genes. This list was further refined by mining gene expression data to exclude genes that had potential functional redundancy due to co-expressed family members (12 genes) and genes that had inconsistent light responses across other publicly available microarray datasets (five genes). We next characterized the phenotypes of rice lines carrying mutations in ten of the remaining candidate genes and then carried out co-expression analysis associated with these genes. This analysis effectively provided candidate functions for two genes of previously unknown function and for one gene not directly linked to the tested biochemical pathways. These data demonstrate the efficiency of combining gene family-based expression profiles with analyses of insertional mutants to identify novel genes and their functions, even among members of multi-gene families

    Refinement of Light-Responsive Transcript Lists Using Rice Oligonucleotide Arrays: Evaluation of Gene-Redundancy

    Get PDF
    Studies of gene function are often hampered by gene-redundancy, especially in organisms with large genomes such as rice (Oryza sativa). We present an approach for using transcriptomics data to focus functional studies and address redundancy. To this end, we have constructed and validated an inexpensive and publicly available rice oligonucleotide near-whole genome array, called the rice NSF45K array. We generated expression profiles for light- vs. dark-grown rice leaf tissue and validated the biological significance of the data by analyzing sources of variation and confirming expression trends with reverse transcription polymerase chain reaction. We examined trends in the data by evaluating enrichment of gene ontology terms at multiple false discovery rate thresholds. To compare data generated with the NSF45K array with published results, we developed publicly available, web-based tools (www.ricearray.org). The Oligo and EST Anatomy Viewer enables visualization of EST-based expression profiling data for all genes on the array. The Rice Multi-platform Microarray Search Tool facilitates comparison of gene expression profiles across multiple rice microarray platforms. Finally, we incorporated gene expression and biochemical pathway data to reduce the number of candidate gene products putatively participating in the eight steps of the photorespiration pathway from 52 to 10, based on expression levels of putatively functionally redundant genes. We confirmed the efficacy of this method to cope with redundancy by correctly predicting participation in photorespiration of a gene with five paralogs. Applying these methods will accelerate rice functional genomics

    The Cult of the Equity for Pension Funds: Should it Get the Boot?

    Full text link

    Characterization of Arabidopsis FPS isozymes and FPS gene expression analysis provide insight into the biosynthesis of isoprenoid precursors in seeds

    Get PDF
    Arabidopsis thaliana contains two genes encoding farnesyl diphosphate (FPP) synthase (FPS), the prenyl diphoshate synthase that catalyzes the synthesis of FPP from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In this study, we provide evidence that the two Arabidopsis short FPS isozymes FPS1S and FPS2 localize to the cytosol. Both enzymes were expressed in E. coli, purified and biochemically characterized. Despite FPS1S and FPS2 share more than 90% amino acid sequence identity, FPS2 was found to be more efficient as a catalyst, more sensitive to the inhibitory effect of NaCl, and more resistant to thermal inactivation than FPS1S. Homology modelling for FPS1S and FPS2 and analysis of the amino acid differences between the two enzymes revealed an increase in surface polarity and a greater capacity to form surface salt bridges of FPS2 compared to FPS1S. These factors most likely account for the enhanced thermostability of FPS2. Expression analysis of FPS::GUS genes in seeds showed that FPS1 and FPS2 display complementary patterns of expression particularly at late stages of seed development, which suggests that Arabidopsis seeds have two spatially segregated sources of FPP. Functional complementation studies of the Arabidopsis fps2 knockout mutant seed phenotypes demonstrated that under normal conditions FPS1S and FPS2 are functionally interchangeable. A putative role for FPS2 in maintaining seed germination capacity under adverse environmental conditions is discussed
    corecore