580 research outputs found
Identification of Nonlinear Parameter-Dependent Common-Structured models to accommodate varying experimental conditions and design parameter properties
This study considers the identification problem for a class of nonlinear parameter-varying systems associated with the following scenario: the system behaviour depends on some specifically prescribed parameter properties, which are adjustable. To understand the effect of the varying parameters, several different experiments, corresponding to different parameter properties, are carried out and different data sets are collected. The objective is to find, from the available data sets, a common parameter-dependent model structure that best fits the adjustable parameter properties for the underlying system. An efficient common model structure selection (CMSS) algorithm, called the extended forward orthogonal regression (EFOR) algorithm, is proposed to select such a common model structure. Several examples are presented to illustrate the application and the effectiveness of the new identification approach
An algorithm for determining the output frequency range of Volterra models with multiple inputs
A new algorithm for determining the output frequency range and the frequency components of Volterra models under multiple inputs is introduced for nonlinear system analysis. For a given Volterra model, the output frequency components corresponding to a multi-tone input can easily be calculated using the new algorithm
Density functional method for nonequilibrium electron transport
We describe an ab initio method for calculating the electronic structure,
electronic transport, and forces acting on the atoms, for atomic scale systems
connected to semi-infinite electrodes and with an applied voltage bias. Our
method is based on the density functional theory (DFT) as implemented in the
well tested Siesta approach (which uses non-local norm-conserving
pseudopotentials to describe the effect of the core electrons, and linear
combination of finite-range numerical atomic orbitals to describe the valence
states). We fully deal with the atomistic structure of the whole system,
treating both the contact and the electrodes on the same footing. The effect of
the finite bias (including selfconsistency and the solution of the
electrostatic problem) is taken into account using nonequilibrium Green's
functions. We relate the nonequilibrium Green's function expressions to the
more transparent scheme involving the scattering states. As an illustration,
the method is applied to three systems where we are able to compare our results
to earlier ab initio DFT calculations or experiments, and we point out
differences between this method and existing schemes. The systems considered
are: (1) single atom carbon wires connected to aluminum electrodes with
extended or finite cross section, (2) single atom gold wires, and finally (3)
large carbon nanotube systems with point defects.Comment: 18 pages, 23 figure
Elliptic curves of large rank and small conductor
For r=6,7,...,11 we find an elliptic curve E/Q of rank at least r and the
smallest conductor known, improving on the previous records by factors ranging
from 1.0136 (for r=6) to over 100 (for r=10 and r=11). We describe our search
methods, and tabulate, for each r=5,6,...,11, the five curves of lowest
conductor, and (except for r=11) also the five of lowest absolute discriminant,
that we found.Comment: 16 pages, including tables and one .eps figure; to appear in the
Proceedings of ANTS-6 (June 2004, Burlington, VT). Revised somewhat after
comments by J.Silverman on the previous draft, and again to get the correct
page break
Angle-resolved photoemission in doped charge-transfer Mott insulators
A theory of angle-resolved photoemission (ARPES) in doped cuprates and other
charge-transfer Mott insulators is developed taking into account the realistic
(LDA+U) band structure, (bi)polaron formation due to the strong electron-phonon
interaction, and a random field potential. In most of these materials the first
band to be doped is the oxygen band inside the Mott-Hubbard gap. We derive the
coherent part of the ARPES spectra with the oxygen hole spectral function
calculated in the non-crossing (ladder) approximation and with the exact
spectral function of a one-dimensional hole in a random potential. Some unusual
features of ARPES including the polarisation dependence and spectral shape in
YBa2Cu3O7 and YBa2Cu4O8 are described without any Fermi-surface, large or
small. The theory is compatible with the doping dependence of kinetic and
thermodynamic properties of cuprates as well as with the d-wave symmetry of the
superconducting order parameter.Comment: 8 pages (RevTeX), 10 figures, submitted to Phys. Rev.
Pulsar-wind nebulae and magnetar outflows: observations at radio, X-ray, and gamma-ray wavelengths
We review observations of several classes of neutron-star-powered outflows:
pulsar-wind nebulae (PWNe) inside shell supernova remnants (SNRs), PWNe
interacting directly with interstellar medium (ISM), and magnetar-powered
outflows. We describe radio, X-ray, and gamma-ray observations of PWNe,
focusing first on integrated spectral-energy distributions (SEDs) and global
spectral properties. High-resolution X-ray imaging of PWNe shows a bewildering
array of morphologies, with jets, trails, and other structures. Several of the
23 so far identified magnetars show evidence for continuous or sporadic
emission of material, sometimes associated with giant flares, and a few
possible "magnetar-wind nebulae" have been recently identified.Comment: 61 pages, 44 figures (reduced in quality for size reasons). Published
in Space Science Reviews, "Jets and Winds in Pulsar Wind Nebulae, Gamma-ray
Bursts and Blazars: Physics of Extreme Energy Release
Partial Wave Analysis of
BES data on are presented. The
contribution peaks strongly near threshold. It is fitted with a
broad resonance with mass MeV, width MeV. A broad resonance peaking at 2020 MeV is also required
with width MeV. There is further evidence for a component
peaking at 2.55 GeV. The non- contribution is close to phase
space; it peaks at 2.6 GeV and is very different from .Comment: 15 pages, 6 figures, 1 table, Submitted to PL
Steroid metabolome analysis reveals prevalent glucocorticoid excess in primary aldosteronism
BACKGROUND. Adrenal aldosterone excess is the most common cause of secondary hypertension and is associated with increased cardiovascular morbidity. However, adverse metabolic risk in primary aldosteronism extends beyond hypertension, with increased rates of insulin resistance, type 2 diabetes, and osteoporosis, which cannot be easily explained by aldosterone excess.
METHODS. We performed mass spectrometry–based analysis of a 24-hour urine steroid metabolome in 174 newly diagnosed patients with primary aldosteronism (103 unilateral adenomas, 71 bilateral adrenal hyperplasias) in comparison to 162 healthy controls, 56 patients with endocrine inactive adrenal adenoma, 104 patients with mild subclinical, and 47 with clinically overt adrenal cortisol excess. We also analyzed the expression of cortisol-producing CYP11B1 and aldosterone-producing CYP11B2 enzymes in adenoma tissue from 57 patients with aldosterone-producing adenoma, employing immunohistochemistry with digital image analysis.
RESULTS. Primary aldosteronism patients had significantly increased cortisol and total glucocorticoid metabolite excretion (all P < 0.001), only exceeded by glucocorticoid output in patients with clinically overt adrenal Cushing syndrome. Several surrogate parameters of metabolic risk correlated significantly with glucocorticoid but not mineralocorticoid output. Intratumoral CYP11B1 expression was significantly associated with the corresponding in vivo glucocorticoid excretion. Unilateral adrenalectomy resolved both mineralocorticoid and glucocorticoid excess. Postoperative evidence of adrenal insufficiency was found in 13 (29%) of 45 consecutively tested patients.
CONCLUSION. Our data indicate that glucocorticoid cosecretion is frequently found in primary aldosteronism and contributes to associated metabolic risk. Mineralocorticoid receptor antagonist therapy alone may not be sufficient to counteract adverse metabolic risk in medically treated patients with primary aldosteronism
- …
