22 research outputs found

    An update on nuclear calcium signalling

    Get PDF
    Over the past 15 years or so, numerous studies have sought to characterise how nuclear calcium (Ca2+) signals are generated and reversed, and to understand how events that occur in the nucleoplasm influence cellular Ca2+ activity, and vice versa. In this Commentary, we describe mechanisms of nuclear Ca2+ signalling and discuss what is known about the origin and physiological significance of nuclear Ca2+ transients. In particular, we focus on the idea that the nucleus has an autonomous Ca2+ signalling system that can generate its own Ca2+ transients that modulate processes such as gene transcription. We also discuss the role of nuclear pores and the nuclear envelope in controlling ion flux into the nucleoplasm

    Intra-axonal calcium changes after axotomy in wild-type and slow Wallerian degeneration axons

    Full text link
    Calcium accumulation induces the breakdown of cytoskeleton and axonal fragmentation in the late stages of Wallerian degeneration. In the early stages there is no evidence for any long-lasting, extensive increase in intra-axonal calcium but there does appear to be some redistribution. We hypothesized that changes in calcium distribution could have an early regulatory role in axonal degeneration in addition to the late executionary role of calcium. Schmidt-Lanterman clefts (SLCs), which allow exchange of metabolites and ions between the periaxonal and extracellular space, are likely to have an increased role when axon segments are separated from the cell body, so we used the oxalate-pyroantimonate method to study calcium at SLCs in distal stumps of transected wild-type and slow Wallerian degeneration (Wld(S)) mutant sciatic nerves, in which Wallerian degeneration is greatly delayed. In wild-type nerves most SLCs show a step gradient of calcium distribution, which is lost at around 20% of SLCs within 3mm of the lesion site by 4-24h after nerve transection. To investigate further the association with Wallerian degeneration, we studied nerves from Wld(S) rats. The step gradient of calcium distribution in Wld(S) is absent in around 20% of the intact nerves beneath SLCs but 4-24h following injury, calcium distribution in transected axons remained similar to that in uninjured nerves. We then used calcium indicators to study influx and buffering of calcium in injured neurites in primary culture. Calcium penetration and the early calcium increase in this system were indistinguishable between Wld(S) and wild-type axons. However, a significant difference was observed during the following hours, when calcium increased in wild-type neurites but not in Wld(S) neurites. We conclude that there is little relationship between calcium distribution and the early stages of Wallerian degeneration at the time points studied in vivo or in vitro but that Wld(S) neurites fail to show a later calcium rise that could be a cause or consequence of the later stages of Wallerian degeneration.status: publishe

    Calcium in the heart: when it's good, it's very very good, but when it's bad, it's horrid

    No full text
    Ca(2+) increases in the heart control both contraction and transcription. To accommodate a short-term increased cardiovascular demand, neurohormonal modulators acting on the cardiac pacemaker and individual myocytes induce an increase in frequency and magnitude of myocyte contraction respectively. Prolonged, enhanced function results in hypertrophic growth of the heart, which is initially also associated with greater Ca(2+) signals and cardiac contraction. As a result of disease, however, hypertrophy progresses to a decompensated state and Ca(2+) signalling capacity and cardiac output are reduced. Here, the role that Ca(2+) plays in the induction of hypertrophy as well as the impact that cardiac hypertrophy and failure has on Ca(2+) fluxes will be discussed
    corecore