31 research outputs found

    Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration

    Full text link
    Extensive experimental data from high-energy nucleus-nucleus collisions were recorded using the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The comprehensive set of measurements from the first three years of RHIC operation includes charged particle multiplicities, transverse energy, yield ratios and spectra of identified hadrons in a wide range of transverse momenta (p_T), elliptic flow, two-particle correlations, non-statistical fluctuations, and suppression of particle production at high p_T. The results are examined with an emphasis on implications for the formation of a new state of dense matter. We find that the state of matter created at RHIC cannot be described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted to Nuclear Physics A as a regular article; v3 has minor changes in response to referee comments. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Saturation of azimuthal anisotropy in Au + Au collisions at sqrt(s_NN) = 62 - 200 GeV

    Full text link
    New measurements are presented for charged hadron azimuthal correlations at mid-rapidity in Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV. They are compared to earlier measurements obtained at sqrt(s_NN) = 130 GeV and in Pb+Pb collisions at sqrt(s_NN) = 17.2 GeV. Sizeable anisotropies are observed with centrality and transverse momentum (p_T) dependence characteristic of elliptic flow (v_2). For a broad range of centralities, the observed magnitudes and trends of the differential anisotropy, v_2(p_T), change very little over the collision energy range sqrt(s_NN) = 62-200 GeV, indicating saturation of the excitation function for v_2 at these energies. Such a saturation may be indicative of the dominance of a very soft equation of state for sqrt(s_NN) = 62-200 GeV.Comment: 432 authors, 7 pages text, 4 figures, REVTeX4. To be submitted to Physical Review Letters. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Regularly updated data on stroke and its pathological types, including data on their incidence, prevalence, mortality, disability, risk factors, and epidemiological trends, are important for evidence-based stroke care planning and resource allocation. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) aims to provide a standardised and comprehensive measurement of these metrics at global, regional, and national levels. Methods We applied GBD 2019 analytical tools to calculate stroke incidence, prevalence, mortality, disability-adjusted life-years (DALYs), and the population attributable fraction (PAF) of DALYs (with corresponding 95% uncertainty intervals [UIs]) associated with 19 risk factors, for 204 countries and territories from 1990 to 2019. These estimates were provided for ischaemic stroke, intracerebral haemorrhage, subarachnoid haemorrhage, and all strokes combined, and stratified by sex, age group, and World Bank country income level. Findings In 2019, there were 12·2 million (95% UI 11·0–13·6) incident cases of stroke, 101 million (93·2–111) prevalent cases of stroke, 143 million (133–153) DALYs due to stroke, and 6·55 million (6·00–7·02) deaths from stroke. Globally, stroke remained the second-leading cause of death (11·6% [10·8–12·2] of total deaths) and the third-leading cause of death and disability combined (5·7% [5·1–6·2] of total DALYs) in 2019. From 1990 to 2019, the absolute number of incident strokes increased by 70·0% (67·0–73·0), prevalent strokes increased by 85·0% (83·0–88·0), deaths from stroke increased by 43·0% (31·0–55·0), and DALYs due to stroke increased by 32·0% (22·0–42·0). During the same period, age-standardised rates of stroke incidence decreased by 17·0% (15·0–18·0), mortality decreased by 36·0% (31·0–42·0), prevalence decreased by 6·0% (5·0–7·0), and DALYs decreased by 36·0% (31·0–42·0). However, among people younger than 70 years, prevalence rates increased by 22·0% (21·0–24·0) and incidence rates increased by 15·0% (12·0–18·0). In 2019, the age-standardised stroke-related mortality rate was 3·6 (3·5–3·8) times higher in the World Bank low-income group than in the World Bank high-income group, and the age-standardised stroke-related DALY rate was 3·7 (3·5–3·9) times higher in the low-income group than the high-income group. Ischaemic stroke constituted 62·4% of all incident strokes in 2019 (7·63 million [6·57–8·96]), while intracerebral haemorrhage constituted 27·9% (3·41 million [2·97–3·91]) and subarachnoid haemorrhage constituted 9·7% (1·18 million [1·01–1·39]). In 2019, the five leading risk factors for stroke were high systolic blood pressure (contributing to 79·6 million [67·7–90·8] DALYs or 55·5% [48·2–62·0] of total stroke DALYs), high body-mass index (34·9 million [22·3–48·6] DALYs or 24·3% [15·7–33·2]), high fasting plasma glucose (28·9 million [19·8–41·5] DALYs or 20·2% [13·8–29·1]), ambient particulate matter pollution (28·7 million [23·4–33·4] DALYs or 20·1% [16·6–23·0]), and smoking (25·3 million [22·6–28·2] DALYs or 17·6% [16·4–19·0]). Interpretation The annual number of strokes and deaths due to stroke increased substantially from 1990 to 2019, despite substantial reductions in age-standardised rates, particularly among people older than 70 years. The highest age-standardised stroke-related mortality and DALY rates were in the World Bank low-income group. The fastest-growing risk factor for stroke between 1990 and 2019 was high body-mass index. Without urgent implementation of effective primary prevention strategies, the stroke burden will probably continue to grow across the world, particularly in low-income countries.publishedVersio

    ϒ production in p–Pb collisions at √sNN=8.16 TeV

    Get PDF
    ϒ production in p–Pb interactions is studied at the centre-of-mass energy per nucleon–nucleon collision √sNN = 8.16 TeV with the ALICE detector at the CERN LHC. The measurement is performed reconstructing bottomonium resonances via their dimuon decay channel, in the centre-of-mass rapidity intervals 2.03 < ycms < 3.53 and −4.46 < ycms < −2.96, down to zero transverse momentum. In this work, results on the ϒ(1S) production cross section as a function of rapidity and transverse momentum are presented. The corresponding nuclear modification factor shows a suppression of the ϒ(1S) yields with respect to pp collisions, both at forward and backward rapidity. This suppression is stronger in the low transverse momentum region and shows no significant dependence on the centrality of the interactions. Furthermore, the ϒ(2S) nuclear modification factor is evaluated, suggesting a suppression similar to that of the ϒ(1S). A first measurement of the ϒ(3S) has also been performed. Finally, results are compared with previous ALICE measurements in p–Pb collisions at √sNN = 5.02 TeV and with theoretical calculations.publishedVersio

    The unknown fate of macroplastic in mountain rivers

    Get PDF
    Mountain rivers are typically seen as relatively pristine ecosystems, supporting numerous goods (e.g., water resources) for human populations living not only in the mountain regions but also downstream from them. However recent evidence suggests that mountain river valleys in populated areas can be substantially polluted by macroplastic (plastic item >25 mm). It is unknown how distinct characteristics of mountain rivers modulate macroplastic routes through them, which makes planning effective mitigation strategies difficult. To stimulate future works on this gap, we present a conceptual model of macroplastic transport pathways through mountain river. Based on this model, we formulate four hypotheses on macroplastic input, transport and mechanical degradation in mountain rivers. Then, we propose designs of field experiments that allow each hypothesis to be tested. We hypothesize that some natural characteristics of mountain river catchments can accelerate the input of improperly disposed macroplastic waste from the slope to the river. Further, we hypothesize that specific hydromorphological characteristics of mountain rivers (e.g., high flow velocity) accelerate the downstream transport rate of macroplastic and together with the presence of shallow water and coarse bed sediments it can accelerate mechanical degradation of macroplastic in river channels, accelerating secondary microplastic production. The above suggests that mountain rivers in populated areas can act as microplastic factories, which are able to produce more microplastic from the same amount of macroplastic waste inputted into them (in comparison to lowland rivers that have a different hydromorphology). The produced risks can not only affect mountain rivers but can also be transported downstream. The challenge for the future is how to manage the hypothesized risks, especially in mountain areas particularly exposed to plastic pollution due to waste management deficiencies, high tourism pressure, poor ecological awareness of the population and lack of uniform regional and global regulations for the problem

    Data from Liro et al., 2022. Mountains of plastic: Mismanaged plastic waste along the Carpthian watercourses, STOTEN

    No full text
    Plastic waste poses numerous risks to mountain river ecosystems due to their high biodiversity and specific physical characteristics. Here, we provide a baseline assessment for future evaluation of such risks in the Carpathians, one of the most biodiverse mountain ranges in East-Central Europe. We used high-resolution river network and mismanaged plastic waste (MPW) databases to map MPW along the 175,675 km of watercourses draining this ecoregion. We explored MPW levels as a function of altitude, stream order, river basin, country, and type of nature conservation in a given area. The Carpathian watercourses below 750 m a.s.l. (142,282 km, 81 % of the stream lengths) are identified as significantly affected by MPW. Most MPW hotspots (&gt;409.7 t/yr/km2) occur along rivers in Romania (6568 km; 56.6 % of all hotspot lengths), Hungary (2679 km; 23.1 %), and Ukraine (1914 km; 16.5 %). The majority of the river sections flowing through the areas with negligible MPW (&lt; 1 t/yr/km2) occur in Romania (31,855 km; 47.8 %), Slovakia (14,577 km; 21.9 %), and Ukraine (7492; 11.2 %). The Carpathian watercourses flowing through the areas protected at national level (3988 km; 2.3 % of all watercourses studied) have significantly higher MPW values (median &#61; 7.7 t/yr/km2) than those protected at regional (51,800 km; 29.5 %) (median MPW &#61; 1.25 t/yrkm2) and international levels (66 km; 0.04 %) (median MPW &#61; 0 t/yr/km2). Rivers within the Black Sea basin (88.3 % of all studied watercourses) have significantly higher MPW (median &#61; 5.1 t/yr/km2, 90th percentile &#61; 381.1 t/yr/km2) than those within the Baltic Sea basin (median &#61; 6.5 t/yr/km2, 90th percentile &#61; 84.8 t/yr/km2) (11.1 % of all studied watercourses). Our study indicates the locations and extent of riverine MPW hotspots in the Carpathian Ecoregion, which can support future collaborations between scientists, engineers, governments, and citizens to better manage plastic pollution in this region.</p
    corecore