1,239 research outputs found
Inverse scattering procedures for the reconstruction of one-dimensional permittivity range profile
In the present work we have presented a reliable and efficient algorithm for the data inversion, which is based on a fully nonlinear data model in conjunction with an optimization technique. The reconstruction of the permittivity range profile has been tested both on
synthetic and real data to validate the electromagnetic code as well as to assess the accuracy and efficiency of the reconstruction procedure. We have studied the resolution of the algorithm and its robustness to the noise, demonstrating the ability of our procedure to be able to recognize the presence of high discontinuities even independently from the discretization fixed by the user.
As a part of the ongoing improvement of the presented method, we have addressed the implementation of a new optimization algorithm, namely the particle swarm optimization, which has been customized and enhanced for our purposes.
Finally, a detailed description of a fast and efficient procedure to evaluate the green’s function for a multilayered medium has been given. This is the groundwork useful for the next step toward a more reliable and versatile forward solver to be implemented in the inversion procedure
Observation of Two New N* Peaks in J/psi -> and Decays
The system in decays of is limited to be
isospin 1/2 by isospin conservation. This provides a big advantage in studying
compared with and experiments which mix
isospin 1/2 and 3/2 for the system. Using 58 million decays
collected with the Beijing Electron Positron Collider, more than 100 thousand
events are obtained. Besides two well known
peaks at 1500 MeV and 1670 MeV, there are two new, clear peaks in
the invariant mass spectrum around 1360 MeV and 2030 MeV. They are the
first direct observation of the peak and a long-sought "missing"
peak above 2 GeV in the invariant mass spectrum. A simple
Breit-Wigner fit gives the mass and width for the peak as MeV and MeV, and for the new peak above 2 GeV
as MeV and MeV, respectively
Interface electronic states and boundary conditions for envelope functions
The envelope-function method with generalized boundary conditions is applied
to the description of localized and resonant interface states. A complete set
of phenomenological conditions which restrict the form of connection rules for
envelope functions is derived using the Hermiticity and symmetry requirements.
Empirical coefficients in the connection rules play role of material parameters
which characterize an internal structure of every particular heterointerface.
As an illustration we present the derivation of the most general connection
rules for the one-band effective mass and 4-band Kane models. The conditions
for the existence of Tamm-like localized interface states are established. It
is shown that a nontrivial form of the connection rules can also result in the
formation of resonant states. The most transparent manifestation of such states
is the resonant tunneling through a single-barrier heterostructure.Comment: RevTeX4, 11 pages, 5 eps figures, submitted to Phys.Rev.
Evolution of the electronic structure with size in II-VI semiconductor nanocrystals
In order to provide a quantitatively accurate description of the band gap
variation with sizes in various II-VI semiconductor nanocrystals, we make use
of the recently reported tight-binding parametrization of the corresponding
bulk systems. Using the same tight-binding scheme and parameters, we calculate
the electronic structure of II-VI nanocrystals in real space with sizes ranging
between 5 and 80 {\AA} in diameter. A comparison with available experimental
results from the literature shows an excellent agreement over the entire range
of sizes.Comment: 17 pages, 4 figures, accepted in Phys. Rev.
Search for Invisible Decays of and in and
Using a data sample of decays collected with the BES
II detector at the BEPC, searches for invisible decays of and
in to and are performed.
The signals, which are reconstructed in final states, are used
to tag the and decays. No signals are found for the
invisible decays of either or , and upper limits at the 90%
confidence level are determined to be for the ratio
and for . These are the first
searches for and decays into invisible final states.Comment: 5 pages, 4 figures; Added references, Corrected typo
Weak ferromagnetism with very large canting in a chiral lattice: (pyrimidine)2FeCl2
The transition metal coordination compound (pyrimidine)2FeCl2 crystallizes in
a chiral lattice, space group I 4_1 2 2 (or I4_3 2 2). Combined magnetization,
Mossbauer spectroscopy and powder neutron diffraction studies reveal that it is
a canted antiferromagnet below T_N = 6.4 K with an unusually large canting of
the magnetic moments of 14 deg. from their general antiferromagnetic alignment,
one of the largest reported to date. This results in weak ferromagnetism with a
ferromagnetic component of 1 mu_B. The large canting is due to the interplay
between the antiferromagnetic exchange interaction and the local single-ion
anisotropy in the chiral lattice. The magnetically ordered structure of
(pyrimidine)2FeCl2, however, is not chiral. The implications of these findings
for the search of molecule based materials exhibiting chiral magnetic ordering
is discussed.Comment: 6 pages, 5 figure
The pole in
Using a sample of 58 million events recorded in the BESII detector,
the decay is studied. There are conspicuous
and signals. At low mass, a large
broad peak due to the is observed, and its pole position is determined
to be - MeV from the mean of six analyses.
The errors are dominated by the systematic errors.Comment: 15 pages, 6 figures, submitted to PL
Measurements of Cabibbo Suppressed Hadronic Decay Fractions of Charmed D0 and D+ Mesons
Using data collected with the BESII detector at storage ring
Beijing Electron Positron Collider, the measurements of relative branching
fractions for seven Cabibbo suppressed hadronic weak decays ,
, and , , and are presented.Comment: 11 pages, 5 figure
Measurements of the observed cross sections for exclusive light hadron production in e^+e^- annihilation at \sqrt{s}= 3.773 and 3.650 GeV
By analyzing the data sets of 17.3 pb taken at GeV
and 6.5 pb taken at GeV with the BESII detector at the
BEPC collider, we have measured the observed cross sections for 12 exclusive
light hadron final states produced in annihilation at the two energy
points. We have also set the upper limits on the observed cross sections and
the branching fractions for decay to these final states at 90%
C.L.Comment: 8 pages, 5 figur
Direct Measurements of Absolute Branching Fractions for D0 and D+ Inclusive Semimuonic Decays
By analyzing about 33 data sample collected at and around 3.773
GeV with the BES-II detector at the BEPC collider, we directly measure the
branching fractions for the neutral and charged inclusive semimuonic decays
to be and , and determine the ratio of the two branching
fractions to be
- …
