1,602 research outputs found
Oxygen semipermeable solid oxide membrane composites prepared by electrochemical vapor deposition
Ceramic membrane composites consisting of a coarse porous -alumina or two-layer porous alumina membrane support and an oxygen semipermeable gas tight thin (0.2–5 μm) yttria stabilized zirconia (YSZ) film are prepared by the electrochemical vapor deposition (EVD) method. The minimum gas-tight thickness of the YSZ films depends strongly on the average pore size of the support on which the films are deposited by the EVD process. The oxygen permeation fluxes through such gas tight YSZ membrane composites, measured in situ on the EVD apparatus, are in the range of 3 × 10−9 to 6 × 10−8 mol/cm2-sec with an oxygen partial pressures of P′O2 (high) ≈ 3 × 10−2 atm and P″O2 (low) ≈ 10−5 atm, much larger than the literature data for thicker YSZ pellets. During the oxygen permeation experiments the rate-limiting step is found to be the bulk electrochemical transport in the grown YSZ films with a thickness smaller than 10 μm.\u
How Many Topics? Stability Analysis for Topic Models
Topic modeling refers to the task of discovering the underlying thematic
structure in a text corpus, where the output is commonly presented as a report
of the top terms appearing in each topic. Despite the diversity of topic
modeling algorithms that have been proposed, a common challenge in successfully
applying these techniques is the selection of an appropriate number of topics
for a given corpus. Choosing too few topics will produce results that are
overly broad, while choosing too many will result in the "over-clustering" of a
corpus into many small, highly-similar topics. In this paper, we propose a
term-centric stability analysis strategy to address this issue, the idea being
that a model with an appropriate number of topics will be more robust to
perturbations in the data. Using a topic modeling approach based on matrix
factorization, evaluations performed on a range of corpora show that this
strategy can successfully guide the model selection process.Comment: Improve readability of plots. Add minor clarification
A Simple Model of Epidemics with Pathogen Mutation
We study how the interplay between the memory immune response and pathogen
mutation affects epidemic dynamics in two related models. The first explicitly
models pathogen mutation and individual memory immune responses, with contacted
individuals becoming infected only if they are exposed to strains that are
significantly different from other strains in their memory repertoire. The
second model is a reduction of the first to a system of difference equations.
In this case, individuals spend a fixed amount of time in a generalized immune
class. In both models, we observe four fundamentally different types of
behavior, depending on parameters: (1) pathogen extinction due to lack of
contact between individuals, (2) endemic infection (3) periodic epidemic
outbreaks, and (4) one or more outbreaks followed by extinction of the epidemic
due to extremely low minima in the oscillations. We analyze both models to
determine the location of each transition. Our main result is that pathogens in
highly connected populations must mutate rapidly in order to remain viable.Comment: 9 pages, 11 figure
"Forbidden" transitions between quantum Hall and insulating phases in p-SiGe heterostructures
We show that in dilute metallic p-SiGe heterostructures, magnetic field can
cause multiple quantum Hall-insulator-quantum Hall transitions. The insulating
states are observed between quantum Hall states with filling factors \nu=1 and
2 and, for the first time, between \nu=2 and 3 and between \nu=4 and 6. The
latter are in contradiction with the original global phase diagram for the
quantum Hall effect. We suggest that the application of a (perpendicular)
magnetic field induces insulating behavior in metallic p-SiGe heterostructures
in the same way as in Si MOSFETs. This insulator is then in competition with,
and interrupted by, integer quantum Hall states leading to the multiple
re-entrant transitions. The phase diagram which accounts for these transition
is similar to that previously obtained in Si MOSFETs thus confirming its
universal character
Dynamical Behavior of dilaton in de Sitter space
We study the dynamical behavior of the dilaton in the background of
three-dimensional Kerr-de Sitter space which is inspired from the low-energy
string effective action. The perturbation analysis around the cosmological
horizon of Kerr-de Sitter space reveals a mixing between the dilaton and other
fields. Introducing a gauge (dilaton gauge), we can disentangle this mixing
completely and obtain one decoupled dilaton equation. However it turns out that
this belongs to the tachyon. The stability of de Sitter solution with J=0 is
discussed. Finally we compute the dilaton absorption cross section to extract
information on the cosmological horizon of de Sitter space.Comment: 11 pages, reference added and a version to appear in PL
The national cohort of dairy farms - a data collection platform for mastitis research in Canada
Unphysical Operators in Partially Quenched QCD
We point out that the chiral Lagrangian describing pseudo-Goldstone bosons in
partially quenched QCD has one more four-derivative operator than that for
unquenched QCD with three flavors. The new operator can be chosen to vanish in
the unquenched sector of the partially quenched theory. Its contributions begin
at next-to-leading order in the chiral expansion. At this order it contributes
only to unphysical scattering processes, and we work out some examples. Its
contributions to pseudo-Goldstone properties begin at next-to-next-to-leading
order, and we determine their form. We also determine all the zero and two
derivative operators in the partially quenched chiral Lagrangian,
finding three more than in unquenched QCD, and use these to give the general
form of the analytic next-to-next-to-leading order contributions to the
pseudo-Goldstone mass and decay constant. We discuss the general implications
of such additional operators for the utility of partially quenched simulationsComment: 13 pages, 11 figures Version 2: Additional footnote and parenthesis
in section
Scaling of anisotropy flows in intermediate energy heavy ion collisions
Anisotropic flows (, and ) of light nuclear clusters are
studied by a nucleonic transport model in intermediate energy heavy ion
collisions. The number-of-nucleon scalings of the directed flow () and
elliptic flow () are demonstrated for light nuclear clusters. Moreover,
the ratios of of nuclear clusters show a constant value of 1/2
regardless of the transverse momentum. The above phenomena can be understood by
the coalescence mechanism in nucleonic level and are worthy to be explored in
experiments.Comment: Invited talk at "IX International Conference on Nucleus-Nucleus
Collisions", Rio de Janeiro, Aug 28- Sept 1, 2006; to appear on the
proceeding issue in Nuclear Physics
OSSOS III - RESONANT TRANS-NEPTUNIAN POPULATIONS: CONSTRAINTS from the FIRST QUARTER of the OUTER SOLAR SYSTEM ORIGINS SURVEY
The first two observational sky "blocks" of the Outer Solar System Origins Survey (OSSOS) have significantly increased the number of well characterized observed trans-Neptunian objects (TNOs) in Neptune's mean motion resonances. We describe the 31 securely resonant TNOs detected by OSSOS so far, and we use them to independently verify the resonant population models from the Canada–France Ecliptic Plane Survey (CFEPS), with which we find broad agreement. We confirm that the 5:2 resonance is more populated than models of the outer solar system's dynamical history predict; our minimum population estimate shows that the high-eccentricity (e > 0.35) portion of the resonance is at least as populous as the 2:1 and possibly as populated as the 3:2 resonance. One OSSOS block was well suited for detecting objects trapped at low libration amplitudes in Neptune's 3:2 resonance, a population of interest in testing the origins of resonant TNOs. We detected three 3:2 objects with libration amplitudes below the cutoff modeled by CFEPS; OSSOS thus offers new constraints on this distribution. The OSSOS detections confirm that the 2:1 resonance has a dynamically colder inclination distribution than either the 3:2 or 5:2 resonances. Using the combined OSSOS and CFEPS 2:1 detections, we constrain the fraction of 2:1 objects in the symmetric mode of libration to 0.2–0.85; we also constrain the fraction of asymmetric librators in the leading island, which has been theoretically predicted to vary depending on Neptune's migration history, to be 0.05–0.8. Future OSSOS blocks will improve these constraints
Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration
Extensive experimental data from high-energy nucleus-nucleus collisions were
recorded using the PHENIX detector at the Relativistic Heavy Ion Collider
(RHIC). The comprehensive set of measurements from the first three years of
RHIC operation includes charged particle multiplicities, transverse energy,
yield ratios and spectra of identified hadrons in a wide range of transverse
momenta (p_T), elliptic flow, two-particle correlations, non-statistical
fluctuations, and suppression of particle production at high p_T. The results
are examined with an emphasis on implications for the formation of a new state
of dense matter. We find that the state of matter created at RHIC cannot be
described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted
to Nuclear Physics A as a regular article; v3 has minor changes in response
to referee comments. Plain text data tables for the points plotted in figures
for this and previous PHENIX publications are (or will be) publicly available
at http://www.phenix.bnl.gov/papers.htm
- …
