308 research outputs found
Use of specific Green's functions for solving direct problems involving a heterogeneous rigid frame porous medium slab solicited by acoustic waves
A domain integral method employing a specific Green's function (i.e.,
incorporating some features of the global problem of wave propagation in an
inhomogeneous medium) is developed for solving direct and inverse scattering
problems relative to slab-like macroscopically inhomogeneous porous obstacles.
It is shown how to numerically solve such problems, involving both
spatially-varying density and compressibility, by means of an iterative scheme
initialized with a Born approximation. A numerical solution is obtained for a
canonical problem involving a two-layer slab.Comment: submitted to Math.Meth.Appl.Sc
Rapid DNA mapping by fluorescent single molecule detection
DNA mapping is an important analytical tool in genomic sequencing, medical diagnostics and pathogen identification. Here we report an optical DNA mapping strategy based on direct imaging of individual DNA molecules and localization of multiple sequence motifs on the molecules. Individual genomic DNA molecules were labeled with fluorescent dyes at specific sequence motifs by the action of nicking endonuclease followed by the incorporation of dye terminators with DNA polymerase. The labeled DNA molecules were then stretched into linear form on a modified glass surface and imaged using total internal reflection fluorescence (TIRF) microscopy. By determining the positions of the fluorescent labels with respect to the DNA backbone, the distribution of the sequence motif recognized by the nicking endonuclease can be established with good accuracy, in a manner similar to reading a barcode. With this approach, we constructed a specific sequence motif map of lambda-DNA. We further demonstrated the capability of this approach to rapidly type a human adenovirus and several strains of human rhinovirus
Ultrasonic intensification as a tool for enhanced microbial biofuel yields
peer-reviewedUltrasonication has recently received attention as a novel bioprocessing tool for process intensification in many areas
of downstream processing. Ultrasonic intensification (periodic ultrasonic treatment during the fermentation process)
can result in a more effective homogenization of biomass and faster energy and mass transfer to biomass over short
time periods which can result in enhanced microbial growth. Ultrasonic intensification can allow the rapid selective
extraction of specific biomass components and can enhance product yields which can be of economic benefit. This
review focuses on the role of ultrasonication in the extraction and yield enhancement of compounds from various
microbial sources, specifically algal and cyanobacterial biomass with a focus on the production of biofuels. The
operating principles associated with the process of ultrasonication and the influence of various operating conditions
including ultrasonic frequency, power intensity, ultrasonic duration, reactor designs and kinetics applied for ultrasonic
intensification are also described
Characterization techniques for studying the properties of nanocarriers for systemic delivery
Nanocarriers have attracted a huge interest in the last decade as efficient drug delivery systems and diagnostic tools. They enable effective, targeted, controlled delivery of therapeutic molecules while lowering the side effects caused during the treatment. The physicochemical properties of nanoparticles determine their in vivo pharmacokinetics, biodistribution and tolerability. The most analyzed among these physicochemical properties are shape, size, surface charge and porosity and several techniques have been used to characterize these specific properties. These different techniques assess the particles under varying conditions, such as physical state, solvents etc. and as such probe, in addition to the particles themselves, artifacts due to sample preparation or environment during measurement. Here, we discuss the different methods to precisely evaluate these properties, including their advantages or disadvantages. In several cases, there are physical properties that can be evaluated by more than one technique. Different strengths and limitations of each technique complicate the choice of the most suitable method, while often a combinatorial characterization approach is needed
In Vitro Cellular Adaptations of Indicators of Longevity in Response to Treatment with Serum Collected from Humans on Calorie Restricted Diets
Calorie restriction (CR) produces several health benefits and increases lifespan in many species. Studies suggest that alternate-day fasting (ADF) and exercise can also provide these benefits. Whether CR results in lifespan extension in humans is not known and a direct investigation is not feasible. However, phenotypes observed in CR animals when compared to ad libitum fed (AL) animals, including increased stress resistance and changes in protein expression, can be simulated in cells cultured with media supplemented with blood serum from CR and AL animals. Two pilot studies were undertaken to examine the effects of ADF and CR on indicators of health and longevity in humans. In this study, we used sera collected from those studies to culture human hepatoma cells and assessed the effects on growth, stress resistance and gene expression. Cells cultured in serum collected at the end of the dieting period were compared to cells cultured in serum collected at baseline (before the dieting period). Cells cultured in serum from ADF participants, showed a 20% increase in Sirt1 protein which correlated with reduced triglyceride levels. ADF serum also induced a 9% decrease in proliferation and a 25% increase in heat resistance. Cells cultured in serum from CR participants induced an increase in Sirt1 protein levels by 17% and a 30% increase in PGC-1α mRNA levels. This first in vitro study utilizing human serum to examine effects on markers of health and longevity in cultured cells resulted in increased stress resistance and an up-regulation of genes proposed to be indicators of increased longevity. The use of this in vitro technique may be helpful for predicting the potential of CR, ADF and other dietary manipulations to affect markers of longevity in humans
Changes in Body Weight and Psychotropic Drugs: A Systematic Synthesis of the Literature
<div><h3>Introduction</h3><p>Psychotropic medication use is associated with weight gain. While there are studies and reviews comparing weight gain for psychotropics within some classes, clinicians frequently use drugs from different classes to treat psychiatric disorders.</p> <h3>Objective</h3><p>To undertake a systematic review of all classes of psychotropics to provide an all encompassing evidence-based tool that would allow clinicians to determine the risks of weight gain in making both intra-class and interclass choices of psychotropics.</p> <h3>Methodology and Results</h3><p>We developed a novel hierarchical search strategy that made use of systematic reviews that were already available. When such evidence was not available we went on to evaluate randomly controlled trials, followed by cohort and other clinical trials, narrative reviews, and, where necessary, clinical opinion and anecdotal evidence. The data from the publication with the highest level of evidence based on our hierarchical classification was presented. Recommendations from an expert panel supplemented the evidence used to rank these drugs within their respective classes. Approximately 9500 articles were identified in our literature search of which 666 citations were retrieved. We were able to rank most of the psychotropics based on the available evidence and recommendations from subject matter experts. There were few discrepancies between published evidence and the expert panel in ranking these drugs.</p> <h3>Conclusion</h3><p>Potential for weight gain is an important consideration in choice of any psychotropic. This tool will help clinicians select psychotropics on a case-by-case basis in order to minimize the impact of weight gain when making both intra-class and interclass choices.</p> </div
An interdisciplinary clinical practice model for the management of low-back pain in primary care: the CLIP project
<p>Abstract</p> <p>Background</p> <p>Low-back pain is responsible for significant disability and costs in industrialized countries. Only a minority of subjects suffering from low-back pain will develop persistent disability. However, this minority is responsible for the majority of costs and has the poorest health outcomes. The objective of the Clinic on Low-back pain in Interdisciplinary Practice (CLIP) project was to develop a primary care interdisciplinary practice model for the clinical management of low-back pain and the prevention of persistent disability.</p> <p>Methods</p> <p>Using previously published guidelines, systematic reviews and meta-analyses, a clinical management model for low-back pain was developed by the project team. A structured process facilitating discussions on this model among researchers, stakeholders and clinicians was created. The model was revised following these exchanges, without deviating from the evidence.</p> <p>Results</p> <p>A model consisting of nine elements on clinical management of low-back pain and prevention of persistent disability was developed. The model's two core elements for the prevention of persistent disability are the following: 1) the evaluation of the prognosis at the fourth week of disability, and of key modifiable barriers to return to usual activities if the prognosis is unfavourable; 2) the evaluation of the patient's perceived disability every four weeks, with the evaluation and management of barriers to return to usual activities if perceived disability has not sufficiently improved.</p> <p>Conclusion</p> <p>A primary care interdisciplinary model aimed at improving quality and continuity of care for patients with low-back pain was developed. The effectiveness, efficiency and applicability of the CLIP model in preventing persistent disability in patients suffering from low-back pain should be assessed.</p
FACT, the Bur Kinase Pathway, and the Histone Co-Repressor HirC Have Overlapping Nucleosome-Related Roles in Yeast Transcription Elongation
Gene transcription is constrained by the nucleosomal nature of chromosomal DNA. This nucleosomal barrier is modulated by FACT, a conserved histone-binding heterodimer. FACT mediates transcription-linked nucleosome disassembly and also nucleosome reassembly in the wake of the RNA polymerase II transcription complex, and in this way maintains the repression of ‘cryptic’ promoters found within some genes. Here we focus on a novel mutant version of the yeast FACT subunit Spt16 that supplies essential Spt16 activities but impairs transcription-linked nucleosome reassembly in dominant fashion. This Spt16 mutant protein also has genetic effects that are recessive, which we used to show that certain Spt16 activities collaborate with histone acetylation and the activities of a Bur-kinase/Spt4–Spt5/Paf1C pathway that facilitate transcription elongation. These collaborating activities were opposed by the actions of Rpd3S, a histone deacetylase that restores a repressive chromatin environment in a transcription-linked manner. Spt16 activity paralleling that of HirC, a co-repressor of histone gene expression, was also found to be opposed by Rpd3S. Our findings suggest that Spt16, the Bur/Spt4–Spt5/Paf1C pathway, and normal histone abundance and/or stoichiometry, in mutually cooperative fashion, facilitate nucleosome disassembly during transcription elongation. The recessive nature of these effects of the mutant Spt16 protein on transcription-linked nucleosome disassembly, contrasted to its dominant negative effect on transcription-linked nucleosome reassembly, indicate that mutant FACT harbouring the mutant Spt16 protein competes poorly with normal FACT at the stage of transcription-linked nucleosome disassembly, but effectively with normal FACT for transcription-linked nucleosome reassembly. This functional difference is consistent with the idea that FACT association with the transcription elongation complex depends on nucleosome disassembly, and that the same FACT molecule that associates with an elongation complex through nucleosome disassembly is retained for reassembly of the same nucleosome
Advances in structure elucidation of small molecules using mass spectrometry
The structural elucidation of small molecules using mass spectrometry plays an important role in modern life sciences and bioanalytical approaches. This review covers different soft and hard ionization techniques and figures of merit for modern mass spectrometers, such as mass resolving power, mass accuracy, isotopic abundance accuracy, accurate mass multiple-stage MS(n) capability, as well as hybrid mass spectrometric and orthogonal chromatographic approaches. The latter part discusses mass spectral data handling strategies, which includes background and noise subtraction, adduct formation and detection, charge state determination, accurate mass measurements, elemental composition determinations, and complex data-dependent setups with ion maps and ion trees. The importance of mass spectral library search algorithms for tandem mass spectra and multiple-stage MS(n) mass spectra as well as mass spectral tree libraries that combine multiple-stage mass spectra are outlined. The successive chapter discusses mass spectral fragmentation pathways, biotransformation reactions and drug metabolism studies, the mass spectral simulation and generation of in silico mass spectra, expert systems for mass spectral interpretation, and the use of computational chemistry to explain gas-phase phenomena. A single chapter discusses data handling for hyphenated approaches including mass spectral deconvolution for clean mass spectra, cheminformatics approaches and structure retention relationships, and retention index predictions for gas and liquid chromatography. The last section reviews the current state of electronic data sharing of mass spectra and discusses the importance of software development for the advancement of structure elucidation of small molecules
- …
