314 research outputs found
Destabilization of the thermohaline circulation by transient perturbations to the hydrological cycle
We reconsider the problem of the stability of the thermohaline circulation as
described by a two-dimensional Boussinesq model with mixed boundary conditions.
We determine how the stability properties of the system depend on the intensity
of the hydrological cycle. We define a two-dimensional parameters' space
descriptive of the hydrology of the system and determine, by considering
suitable quasi-static perturbations, a bounded region where multiple equilibria
of the system are realized. We then focus on how the response of the system to
finite-amplitude surface freshwater forcings depends on their rate of increase.
We show that it is possible to define a robust separation between slow and fast
regimes of forcing. Such separation is obtained by singling out an estimate of
the critical growth rate for the anomalous forcing, which can be related to the
characteristic advective time scale of the system.Comment: 37 pages, 8 figures, submitted to Clim. Dy
On acceleration of Krylov-subspace-based Newton and Arnoldi iterations for incompressible CFD: replacing time steppers and generation of initial guess
We propose two techniques aimed at improving the convergence rate of steady
state and eigenvalue solvers preconditioned by the inverse Stokes operator and
realized via time-stepping. First, we suggest a generalization of the Stokes
operator so that the resulting preconditioner operator depends on several
parameters and whose action preserves zero divergence and boundary conditions.
The parameters can be tuned for each problem to speed up the convergence of a
Krylov-subspace-based linear algebra solver. This operator can be inverted by
the Uzawa-like algorithm, and does not need a time-stepping. Second, we propose
to generate an initial guess of steady flow, leading eigenvalue and eigenvector
using orthogonal projection on a divergence-free basis satisfying all boundary
conditions. The approach, including the two proposed techniques, is illustrated
on the solution of the linear stability problem for laterally heated square and
cubic cavities
Sensitivity of the Atlantic meridional overturning circulation to South Atlantic freshwater anomalies
The sensitivity of the Atlantic Meridional Overturning Circulation (AMOC) to changes in basin integrated net evaporation is highly dependent on the zonal salinity contrast at the southern border of the Atlantic. Biases in the freshwater budget strongly affect the stability of the AMOC in numerical models. The impact of these biases is investigated, by adding local anomaly patterns in the South Atlantic to the freshwater fluxes at the surface. These anomalies impact the freshwater and salt transport by the different components of the ocean circulation, in particular the basin-scale salt-advection feedback, completely changing the response of the AMOC to arbitrary perturbations. It is found that an appropriate dipole anomaly pattern at the southern border of the Atlantic Ocean can collapse the AMOC entirely even without a further hosing. The results suggest a new view on the stability of the AMOC, controlled by processes in the South Atlantic. <br/
Global instability in the Ghil--Sellers model
The Ghil--Sellers model, a diffusive one-dimensional energy balance model of Earth's climate, features---for a considerable range of the parameter descriptive of the intensity of the incoming radiation---two stable climate states, where the bistability results from the celebrated ice-albedo feedback. The warm state is qualitatively similar to the present climate, while the cold state corresponds to snowball conditions. Additionally, in the region of bistability, one can find unstable climate states. We find such unstable states by applying for the first time in a geophysical context the so-called edge tracking method, which has been used for studying multiple coexisting states in shear flows. This method has a great potential for studying the global instabilities in multistable systems, and for providing crucial information on the possibility of transitions when forcing is present. We examine robustness, efficiency, and accuracy properties of the edge tracking algorithm. We find that the procedure is the most efficient when taking a single bisection per cycle. Due to the strong diffusivity of the system, the transient dynamics, is approximately confined to the heteroclininc trajectory, connecting the fixed unstable and stable states, after relatively short transient times. Such a constraint dictates a functional relationship between observables. We characterize such a relationship between the global average temperature and a descriptor of nonequilibrium thermodynamics, the large scale temperature gradient between low and high latitudes. We find that a maximum of the temperature gradient is realized at the same value of the average temperature, about 270 K, largely independent of the strength of incoming solar radiation. Due to this maximum, a transient increase and nonmonotonic evolution of the temperature gradient is possible and not untypical. We also examine the structural properties of the system defined by bifurcation diagrams describing the equilibria depending on a system parameter of interest, here the solar strength. We construct new bifurcation diagrams in terms of quantities relevant for describing thermodynamic properties such as the temperature gradient and the material entropy production due to heat transport. We compare our results for the energy balance model to results for the intermediate complexity general circulation model the Planet Simulator and find an interesting qualitative agreement
Phase behaviour of a model of colloidal particles with a fluctuating internal state
Colloidal particles are not simple rigid particles, in general an isolated
particle is a system with many degrees of freedom in its own right, e.g., the
counterions around a charged colloidal particle.The behaviour of model
colloidal particles, with a simple phenomenological model to account for these
degrees of freedom, is studied. It is found that the interaction between the
particles is not pairwise additive. It is even possible that the interaction
between a triplet of particles is attractive while the pair interaction is
repulsive. When this is so the liquid phase is either stable only in a small
region of the phase diagram or absent altogether.Comment: 12 pages including 4 figure
Modeling the dynamics of glacial cycles
This article is concerned with the dynamics of glacial cycles observed in the geological record of the Pleistocene Epoch. It focuses on a conceptual model proposed by Maasch and Saltzman [J. Geophys. Res.,95, D2 (1990), pp. 1955-1963], which is based on physical arguments and emphasizes the role of atmospheric CO2 in the generation and persistence of periodic orbits (limit cycles). The model consists of three ordinary differential equations with four parameters for the anomalies of the total global ice mass, the atmospheric CO2 concentration, and the volume of the North Atlantic Deep Water (NADW). In this article, it is shown that a simplified two-dimensional symmetric version displays many of the essential features of the full model, including equilibrium states, limit cycles, their basic bifurcations, and a Bogdanov-Takens point that serves as an organizing center for the local and global dynamics. Also, symmetry breaking splits the Bogdanov-Takens point into two, with different local dynamics in their neighborhoods
Asymptotic Stability of the Relativistic Boltzmann Equation for the Soft Potentials
In this paper it is shown that unique solutions to the relativistic Boltzmann
equation exist for all time and decay with any polynomial rate towards their
steady state relativistic Maxwellian provided that the initial data starts out
sufficiently close in . If the initial data are continuous then
so is the corresponding solution. We work in the case of a spatially periodic
box. Conditions on the collision kernel are generic in the sense of
(Dudy{\'n}ski and Ekiel-Je{\.z}ewska, Comm. Math. Phys., 1988); this resolves
the open question of global existence for the soft potentials.Comment: 64 page
Derivation of Delay Equation Climate Models Using the Mori-Zwanzig Formalism
This is the author accepted manuscript. The final version is available from The Royal Society via the DOI in this record.Data access: The codes supporting this article have been uploaded as part of the supplementary
material. They can also be found on the online repository figshare: https://doi.org/10.6084/m9.figshare.8085683.v1Models incorporating delay have been frequently used to understand climate variability phenomena, but often the delay is introduced through an ad-hoc physical reasoning, such as the propagation time of waves. In this paper, the Mori-Zwanzig formalism is introduced as a way to systematically derive delay models from systems of partial differential equations and hence provides a better justification for using these delay-type models. The Mori-Zwanzig technique gives a formal rewriting of the system using a projection onto a set of resolved variables, where the rewritten system contains a memory term. The computation of this memory term requires solving the orthogonal dynamics equation, which represents the unresolved dynamics. For nonlinear systems, it is often not possible to obtain an analytical solution to the orthogonal dynamics and an approximate solution needs to be found. Here, we demonstrate the Mori-Zwanzig technique for a two-strip model of the El Nino Southern Oscillation (ENSO) and explore methods to solve the orthogonal dynamics. The resulting nonlinear delay model contains an additional term compared to previously proposed ad-hoc conceptual models. This new term leads to a larger ENSO period, which is closer to that seen in observations.European Union Horizon 2020Dutch Science Foundation (NWOEngineering and Physical Sciences Research Council (EPSRC
EU Support for Robust, Effective, and Democratic Global Governance: A Conceptual Framework
The ENSURED project addresses the following research question: How can the EU and its members, in a contested world in transition, transform and defend global governance to make it more robust, effective, and democratic? This conceptual framework provides the basis for the empirical analysis of the project, which includes case studies, comparative analyses, and an expert survey. It starts by operationalising the three core concepts of the project – robust, effective, and democratic global governance – and considers their interactions. The conceptual framework then identifies the unexploited potential for global governance reform by unpacking the positions of major international actors. It also clarifies alternative pathways to global governance transformation and specifically considers the role that the EU and its members play in these processes
EU Support for Robust, Effective, and Democratic Global Governance: A Conceptual Framework
The ENSURED project addresses the following research question: How can the EU and its members, in a contested world in transition, transform and defend global governance to make it more robust, effective, and democratic? This conceptual framework provides the basis for the empirical analysis of the project, which includes case studies, comparative analyses, and an expert survey. It starts by operationalising the three core concepts of the project – robust, effective, and democratic global governance – and considers their interactions. The conceptual framework then identifies the unexploited potential for global governance reform by unpacking the positions of major international actors. It also clarifies alternative pathways to global governance transformation and specifically considers the role that the EU and its members play in these processes
- …
