8,103 research outputs found
Single-filament Composite MgB2/SUS Ribbons by Powder-In-Tube Process
We report the successful fabrication of single-filament composite MgB2/SUS
ribbons, as an ultra-robust conductor type, employing the powder-in-tube (PIT)
process, by swaging and cold rolling only. The remarkable transport critical
current (Ic) of the non-sintered MgB2/SUS ribbon has observed, as an unexpected
result. Transport critical currents Ic ~ 316 A at T = 4.2 K and Ic ~ 82 A at T
= 20 K were observed at self-field, for the non-sintered composite MgB2/SUS
ribbon. In addition, the persistent current density Jp values, that were
estimated by Bean formula, were more than ~ 7  105 A/cm2 at T = 5 K,
and ~ 1.2  105 A/cm2 at T = 30 K, for the sintered composite MgB2/SUS
ribbon, at H = 0 G.Comment: 10 pages, 4 figure
Neutrino-driven Explosions
The question why and how core-collapse supernovae (SNe) explode is one of the
central and most long-standing riddles of stellar astrophysics. A solution is
crucial for deciphering the SN phenomenon, for predicting observable signals
such as light curves and spectra, nucleosynthesis, neutrinos, and gravitational
waves, for defining the role of SNe in the evolution of galaxies, and for
explaining the birth conditions and properties of neutron stars (NSs) and
stellar-mass black holes. Since the formation of such compact remnants releases
over hundred times more energy in neutrinos than the SN in the explosion,
neutrinos can be the decisive agents for powering the SN outburst. According to
the standard paradigm of the neutrino-driven mechanism, the energy transfer by
the intense neutrino flux to the medium behind the stagnating core-bounce
shock, assisted by violent hydrodynamic mass motions (sometimes subsumed by the
term "turbulence"), revives the outward shock motion and thus initiates the SN
blast. Because of the weak coupling of neutrinos in the region of this energy
deposition, detailed, multidimensional hydrodynamic models including neutrino
transport and a wide variety of physics are needed to assess the viability of
the mechanism. Owing to advanced numerical codes and increasing supercomputer
power, considerable progress has been achieved in our understanding of the
physical processes that have to act in concert for the success of
neutrino-driven explosions. First studies begin to reveal observational
implications and avenues to test the theoretical picture by data from
individual SNe and SN remnants but also from population-integrated observables.
While models will be further refined, a real breakthrough is expected through
the next Galactic core-collapse SN, when neutrinos and gravitational waves can
be used to probe the conditions deep inside the dying star. (abridged)Comment: Author version of chapter for 'Handbook of Supernovae,' edited by A.
Alsabti and P. Murdin, Springer. 54 pages, 13 figure
The Dawn of Open Access to Phylogenetic Data
The scientific enterprise depends critically on the preservation of and open
access to published data. This basic tenet applies acutely to phylogenies
(estimates of evolutionary relationships among species). Increasingly,
phylogenies are estimated from increasingly large, genome-scale datasets using
increasingly complex statistical methods that require increasing levels of
expertise and computational investment. Moreover, the resulting phylogenetic
data provide an explicit historical perspective that critically informs
research in a vast and growing number of scientific disciplines. One such use
is the study of changes in rates of lineage diversification (speciation -
extinction) through time. As part of a meta-analysis in this area, we sought to
collect phylogenetic data (comprising nucleotide sequence alignment and tree
files) from 217 studies published in 46 journals over a 13-year period. We
document our attempts to procure those data (from online archives and by direct
request to corresponding authors), and report results of analyses (using
Bayesian logistic regression) to assess the impact of various factors on the
success of our efforts. Overall, complete phylogenetic data for ~60% of these
studies are effectively lost to science. Our study indicates that phylogenetic
data are more likely to be deposited in online archives and/or shared upon
request when: (1) the publishing journal has a strong data-sharing policy; (2)
the publishing journal has a higher impact factor, and; (3) the data are
requested from faculty rather than students. Although the situation appears
dire, our analyses suggest that it is far from hopeless: recent initiatives by
the scientific community -- including policy changes by journals and funding
agencies -- are improving the state of affairs
Uncovering the hidden costs of offshoring: The interplay of complexity, organizational design, and experience
This study investigates estimation errors due to hidden costs—the costs of implementation that are neglected in strategic decision-making processes—in the context of services offshoring. Based on data from the Offshoring Research Network, we find that decision makers are more likely to make cost-estimation errors given increasing configuration and task complexity in captive offshoring and offshore outsourcing, respectively. Moreover, we show that experience and a strong orientation toward organizational design in the offshoring strategy reduce the cost-estimation errors that follow from complexity. Our findings contribute to research on the effectiveness of sourcing and global strategies by stressing the importance of organizational design and experience in dealing with increasing complexity
Somato-Dendritic Localization and Signaling by Leptin Receptors in Hypothalamic POMC and AgRP Neurons
Leptin acts via neuronal leptin receptors to control energy balance. Hypothalamic pro-opiomelanocortin (POMC) and agouti-related peptide (AgRP)/Neuropeptide Y (NPY)/GABA neurons produce anorexigenic and orexigenic neuropeptides and neurotransmitters, and express the long signaling form of the leptin receptor (LepRb). Despite progress in the understanding of LepRb signaling and function, the sub-cellular localization of LepRb in target neurons has not been determined, primarily due to lack of sensitive anti-LepRb antibodies. Here we applied light microscopy (LM), confocal-laser scanning microscopy (CLSM), and electron microscopy (EM) to investigate LepRb localization and signaling in mice expressing a HA-tagged LepRb selectively in POMC or AgRP/NPY/GABA neurons. We report that LepRb receptors exhibit a somato-dendritic expression pattern. We further show that LepRb activates STAT3 phosphorylation in neuronal fibers within several hypothalamic and hindbrain nuclei of wild-type mice and rats, and specifically in dendrites of arcuate POMC and AgRP/NPY/GABA neurons of Leprb+/+ mice and in Leprbdb/db mice expressing HA-LepRb in a neuron specific manner. We did not find evidence of LepRb localization or STAT3-signaling in axon-fibers or nerve-terminals of POMC and AgRP/NPY/GABA neurons. Three-dimensional serial EM-reconstruction of dendritic segments from POMC and AgRP/NPY/GABA neurons indicates a high density of shaft synapses. In addition, we found that the leptin activates STAT3 signaling in proximity to synapses on POMC and AgRP/NPY/GABA dendritic shafts. Taken together, these data suggest that the signaling-form of the leptin receptor exhibits a somato-dendritic expression pattern in POMC and AgRP/NPY/GABA neurons. Dendritic LepRb signaling may therefore play an important role in leptin’s central effects on energy balance, possibly through modulation of synaptic activity via post-synaptic mechanisms
Oceanic Heat Delivery to the Antarctic Continental Shelf: Large-Scale, Low-Frequency Variability
Electric-field-induced alignment of electrically neutral disk-like particles: modelling and calculation
This work reveals a torque from electric field to electrically neutral flakes that are suspended in a higher electrical conductive matrix. The torque tends to rotate the particles toward an orientation with its long axis parallel to the electric current flow. The alignment enables the anisotropic properties of tiny particles to integrate together and generate desirable macroscale anisotropic properties. The torque was obtained from thermodynamic calculation of electric current free energy at various microstructure configurations. It is significant even when the electrical potential gradient becomes as low as 100 v/m. The changes of electrical, electroplastic and thermal properties during particles alignment were discussed
Characterisation of Bombyx mori odorant-binding proteins reveals that a general odorant-binding protein discriminates between sex pheromone components
In many insect species, odorant-binding proteins (OBPs) are thought to be responsible for the transport of pheromones and other semiochemicals across the sensillum lymph to the olfactory receptors (ORs) within the antennal sensilla. In the silkworm Bombyx mori, the OBPs are subdivided into three main subfamilies; pheromone-binding proteins (PBPs), general odorant-binding proteins (GOBPs) and antennal-binding proteins (ABPs). We used the MotifSearch algorithm to search for genes encoding putative OBPs in B. mori and found 13, many fewer than are found in the genomes of fruit flies and mosquitoes. The 13 genes include seven new ABP-like OBPs as well as the previously identified PBPs (three), GOBPs (two) and ABPx. Quantitative examination of transcript levels showed that BmorPBP1, BmorGOBP1, BmorGOBP2 and BmorABPx are expressed at very high levels in the antennae and so could be involved in olfaction. A new two-phase binding assay, along with other established assays, showed that BmorPBP1, BmorPBP2, BmorGOBP2 and BmorABPx all bind to the B. mori sex pheromone component (10E,12Z)-hexadecadien-1-ol (bombykol). BmorPBP1, BmorPBP2 and BmorABPx also bind the pheromone component (10E,12Z)-hexadecadienal (bombykal) equally well, whereas BmorGOBP2 can discriminate between bombykol and bombykal. X-ray structures show that when bombykol is bound to BmorGOBP2 it adopts a different conformation from that found when it binds to BmorPBP1. Binding to BmorGOBP2 involves hydrogen bonding to Arg110 rather than to Ser56 as found for BmorPBP1
Baryon Washout, Electroweak Phase Transition, and Perturbation Theory
We analyze the conventional perturbative treatment of sphaleron-induced
baryon number washout relevant for electroweak baryogenesis and show that it is
not gauge-independent due to the failure of consistently implementing the
Nielsen identities order-by-order in perturbation theory. We provide a
gauge-independent criterion for baryon number preservation in place of the
conventional (gauge-dependent) criterion needed for successful electroweak
baryogenesis. We also review the arguments leading to the preservation
criterion and analyze several sources of theoretical uncertainties in obtaining
a numerical bound. In various beyond the standard model scenarios, a realistic
perturbative treatment will likely require knowledge of the complete two-loop
finite temperature effective potential and the one-loop sphaleron rate.Comment: 25 pages, 9 figures; v2 minor typos correcte
Wake up, wake up! It's me! It's my life! patient narratives on person-centeredness in the integrated care context: a qualitative study
Person-centered care emphasizes a holistic, humanistic approach that puts patients first, at the center of medical care. Person-centeredness is also considered a core element of integrated care. Yet typologies of integrated care mainly describe how patients fit within integrated services, rather than how services fit into the patient's world. Patient-centeredness has been commonly defined through physician's behaviors aimed at delivering patient-centered care. Yet, it is unclear how 'person-centeredness' is realized in integrated care through the patient voice. We aimed to explore patient narratives of person-centeredness in the integrated care context
- …
