1,230 research outputs found

    Kondo Physics in a Single Electron Transistor

    Full text link
    The question of how localized electrons interact with delocalized electrons is central to many problems at the forefront of solid state physics. The simplest example is the Kondo phenomenon, which occurs when an impurity atom with an unpaired electron is placed in a metal, and the energy of the unpaired electron is far below the Fermi energy. At low temperatures a spin singlet state is formed between the unpaired localized electron and delocalized electrons at the Fermi energy. The confined droplet of electrons interacting with the leads of a single electron transistor (SET) is closely analogous to an impurity atom interacting with the delocalized electrons in a metal. (Meir, Wingreen and Lee, 1993) We report here measurements on a new generation of SETs that display all the aspects of the Kondo phenomenon: the spin singlet forms and causes an enhancement of the zero-bias conductance when the number of electrons on the artificial atom is odd but not when it is even. The singlet is altered by applying a voltage or magnetic field or by increasing the temperature, all in ways that agree with predictions. (Wingreen and Meir 1994)Comment: 10 pages of LaTeX plus 5 separate ps/eps figures. Submitted to Natur

    Probabilistic Fragmentation and Effective Power Law

    Full text link
    A simple fragmentation model is introduced and analysed. We show that, under very general conditions, an effective power law for the mass distribution arises with realistic exponent. This exponent has a universal limit, but in practice the effective exponent depends on the detailed breaking mechanism and the initial conditions. This dependence is in good agreement with experimental results of fragmentation.Comment: 4 pages Revtex, 2 figures, zipped and uuencode

    Pseudospin-Resolved Transport Spectroscopy of the Kondo Effect in a Double Quantum Dot

    Full text link
    We report measurements of the Kondo effect in a double quantum dot (DQD), where the orbital states act as pseudospin states whose degeneracy contributes to Kondo screening. Standard transport spectroscopy as a function of the bias voltage on both dots shows a zero-bias peak in conductance, analogous to that observed for spin Kondo in single dots. Breaking the orbital degeneracy splits the Kondo resonance in the tunneling density of states above and below the Fermi energy of the leads, with the resonances having different pseudospin character. Using pseudospin-resolved spectroscopy, we demonstrate the pseudospin character by observing a Kondo peak at only one sign of the bias voltage. We show that even when the pseudospin states have very different tunnel rates to the leads, a Kondo temperature can be consistently defined for the DQD system.Comment: Text and supplementary information. Text: 4 pages, 5 figures. Supplementary information: 4 pages, 4 figure

    Temperature dependence of Fano line shapes in a weakly coupled single-electron transistor

    Full text link
    We report the temperature dependence of the zero-bias conductance of a single-electron transistor in the regime of weak coupling between the quantum dot and the leads. The Fano line shape, convoluted with thermal broadening, provides a good fit to the observed asymmetric Coulomb charging peaks. However, the width of the peaks increases more rapidly than expected from the thermal broadening of the Fermi distribution in a temperature range for which Fano interference is unaffected. The intrinsic width of the resonance extracted from the fits increases approximately quadratically with temperature. Above about 600 mK the asymmetry of the peaks decreases, suggesting that phase coherence necessary for Fano interference is reduced with increasing temperature.Comment: 6 pages, 4 figures. New references have been added to support the analysi

    An Electronic Mach-Zehnder Interferometer

    Full text link
    Double-slit electron interferometers, fabricated in high mobility two-dimensional electron gas (2DEG), proved to be very powerful tools in studying coherent wave-like phenomena in mesoscopic systems. However, they suffer from small fringe visibility due to the many channels in each slit and poor sensitivity to small currents due to their open geometry. Moreover, the interferometers do not function in a high magnetic field, namely, in the quantum Hall effect (QHE) regime, since it destroys the symmetry between left and right slits. Here, we report on the fabrication and operation of a novel, single channel, two-path electron interferometer that functions in a high magnetic field. It is the first electronic analog of the well-known optical Mach-Zehnder (MZ) interferometer. Based on single edge state and closed geometry transport in the QHE regime the interferometer is highly sensitive and exhibits very high visibility (62%). However, the interference pattern decays precipitously with increasing electron temperature or energy. While we do not understand the reason for the dephasing we show, via shot noise measurement, that it is not a decoherence process that results from inelastic scattering events.Comment: to appear in Natur

    Singlet-triplet transition in a single-electron transistor at zero magnetic field

    Full text link
    We report sharp peaks in the differential conductance of a single-electron transistor (SET) at low temperature, for gate voltages at which charge fluctuations are suppressed. For odd numbers of electrons we observe the expected Kondo peak at zero bias. For even numbers of electrons we generally observe Kondo-like features corresponding to excited states. For the latter, the excitation energy often decreases with gate voltage until a new zero-bias Kondo peak results. We ascribe this behavior to a singlet-triplet transition in zero magnetic field driven by the change of shape of the potential that confines the electrons in the SET.Comment: 4 p., 4 fig., 5 new ref. Rewrote 1st paragr. on p. 4. Revised author list. More detailed fit results on page 3. A plotting error in the horizontal axis of Fig. 1b and 3 was corrected, and so were the numbers in the text read from those fig. Fig. 4 was modified with a better temperature calibration (changes are a few percent). The inset of this fig. was removed as it is unnecessary here. Added remarks in the conclusion. Typos are correcte
    corecore