1,174 research outputs found

    Deglacial laminated facies on the NW European continental margin: The hydrographic significance of British-Irish Ice Sheet deglaciation and Fleuve Manche paleoriver discharges

    Get PDF
    [1] We have compiled results obtained from four high sedimentation rate hemipelagic sequences from the Celtic sector of the NW European margin ( NE Atlantic) to investigate the paleoceanographic and paleoclimatic evolution of the area over the last few climatic cycles. We focus on periods characteristic of deglacial transitions. We adopt a multiproxy sedimentological, geochemical, and micropaleontological approach, applying a sampling resolution down to ten microns for specific intervals. The investigation demonstrates the relationships between the Bay of Biscay hydrography and the glacial/deglacial history of both the proximal British-Irish Ice Sheet (BIIS) and the western European continent. We identify recurrent phases of laminae deposition concurrent with major BIIS deglacial episodes in all the studied cores. Evidence for abrupt freshwater discharges into the open ocean highlights the influence of such events at a regional scale. We discuss their impact at a global scale considering the present and past key location of the Bay of Biscay versus the Atlantic Meridional Overturning Circulation (AMOC)

    Long-term variations in Iceland–Scotland overflow strength during the Holocene

    Get PDF
    The overflow of deep water from the Nordic seas into the North Atlantic plays a critical role in global ocean circulation and climate. Approximately half of this overflow occurs via the Iceland–Scotland (I–S) overflow, yet the history of its strength throughout the Holocene (~ 0–11 700 yr ago, ka) is poorly constrained, with previous studies presenting apparently contradictory evidence regarding its long-term variability. Here, we provide a comprehensive reconstruction of I–S overflow strength throughout the Holocene using sediment grain size data from a depth transect of 13 cores from the Iceland Basin. Our data are consistent with the hypothesis that the main axis of the I–S overflow on the Iceland slope was shallower during the early Holocene, deepening to its present depth by ~ 7 ka. Our results also reveal weaker I–S overflow during the early and late Holocene, with maximum overflow strength occurring at ~ 7 ka, the time of a regional climate thermal maximum. Climate model simulations suggest a shoaling of deep convection in the Nordic seas during the early and late Holocene, consistent with our evidence for weaker I–S overflow during these intervals. Whereas the reduction in I–S overflow strength during the early Holocene likely resulted from melting remnant glacial ice sheets, the decline throughout the last 7000 yr was caused by an orbitally induced increase in the amount of Arctic sea ice entering the Nordic seas. Although the flux of Arctic sea ice to the Nordic seas is expected to decrease throughout the next century, model simulations predict that under high emissions scenarios, competing effects, such as warmer sea surface temperatures in the Nordic seas, will result in reduced deep convection, likely driving a weaker I–S overflow

    Reversed flow of Atlantic deep water during the Last Glacial Maximum

    Get PDF
    The meridional overturning circulation (MOC) of the Atlantic Ocean is considered to be one of the most important components of the climate system. This is because its warm surface currents, such as the Gulf Stream, redistribute huge amounts of energy from tropical to high latitudes and influence regional weather and climate patterns, whereas its lower limb ventilates the deep ocean and affects the storage of carbon in the abyss, away from the atmosphere. Despite its significance for future climate, the operation of the MOC under contrasting climates of the past remains controversial. Nutrient-based proxies and recent model simulations indicate that during the Last Glacial Maximum the convective activity in the North Atlantic Ocean was much weaker than at present. In contrast, rate-sensitive radiogenic 231 Pa/ Th isotope ratios from the North Atlantic have been interpreted to indicate only minor changes in MOC strength. Here we show that the basin-scale abyssal circulation of the Atlantic Ocean was probably reversed during the Last Glacial Maximum and was dominated by northward water flow from the Southern Ocean. These conclusions are based on new high-resolution data from the South Atlantic Ocean that establish the basin-scale north to south gradient in 231 Pa/ 230 Th, and thus the direction of the deep ocean circulation. Our findings are consistent with nutrient-based proxies and argue that further analysis of 231 Pa/ 230 Th outside the North Atlantic basin will enhance our understanding of past ocean circulation, provided that spatial gradients are carefully considered. This broader perspective suggests that the modern pattern of the Atlantic MOCg-with a prominent southerly flow of deep waters originating in the North Atlanticg-arose only during the Holocene epoch

    Does the extended Glasgow Outcome Scale add value to the conventional Glasgow Outcome Scale?

    Get PDF
    The Glasgow Outcome Scale (GOS) is firmly established as the primary outcome measure for use in Phase III trials of interventions in traumatic brain injury (TBI). However, the GOS has been criticized for its lack of sensitivity to detect small but clinically relevant changes in outcome. The Glasgow Outcome Scale-Extended (GOSE) potentially addresses this criticism, and in this study we estimate the efficiency gain associated with using the GOSE in place of the GOS in ordinal analysis of 6-month outcome. The study uses both simulation and the reanalysis of existing data from two completed TBI studies, one an observational cohort study and the other a randomized controlled trial. As expected, the results show that using an ordinal technique to analyze the GOS gives a substantial gain in efficiency relative to the conventional analysis, which collapses the GOS onto a binary scale (favorable versus unfavorable outcome). We also found that using the GOSE gave a modest but consistent increase in efficiency relative to the GOS in both studies, corresponding to a reduction in the required sample size of the order of 3–5%. We recommend that the GOSE be used in place of the GOS as the primary outcome measure in trials of TBI, with an appropriate ordinal approach being taken to the statistical analysis

    An agent-based model about the effects of fake news on a norovirus outbreak

    Get PDF
    Background; Concern about health misinformation is longstanding, especially on the Internet. Methods; Using agent-based models, we considered the effects of such misinformation on a norovirus outbreak, and some methods for countering the possible impacts of “good” and “bad” health advice. The work explicitly models spread of physical disease and information (both online and offline) as two separate but interacting processes. The models have multiple stochastic elements; repeat model runs were made to identify parameter values that most consistently produced the desired target baseline scenario. Next, parameters were found that most consistently led to a scenario when outbreak severity was clearly made worse by circulating poor quality disease prevention advice. Strategies to counter “fake” health news were tested. Results; Reducing bad advice to 30% of total information or making at least 30% of people fully resistant to believing in and sharing bad health advice were effective thresholds to counteract the negative impacts of bad advice during a norovirus outbreak. Conclusion: How feasible it is to achieve these targets within communication networks (online and offline) should be explored

    Norms and trust-shaping relationships among food-exporting SMEs in Ghana

    Get PDF
    There is a marked paucity of empirically rigorous research that focuses on the impact that indigenous institutional influences can have on the internationalization strategies of entrepreneurs operating in developing countries. This study therefore explores the complex processes through which owner-managers of food-exporting SMEs in Ghana draw on cultural norms to build networks that enable internationalization, in the absence of formal institutional support. The results facilitate a better understanding of the hybridization of indigenous and global norms that underpin SME internationalization in Ghana and other developing economies, particularly in Africa. The study contributes to the theory and practice of interorganizational relationships and to international entrepreneurship in an African context

    Expedition 361 summary

    Get PDF
    International Ocean Discovery Program Expedition 361 drilled six sites on the southeast African margin (southwest Indian Ocean) and in the Indian-Atlantic Ocean gateway, from 30 January to 31 March 2016. In total, 5175 m of core was recovered, with an average recovery of 102%, during 29.7 days of on-site operations. The sites, situated in the Mozambique Channel at locations directly influenced by discharge from the Zambezi and Limpopo River catchments, the Natal Valley, the Agulhas Plateau, and Cape Basin, were targeted to reconstruct the history of the greater Agulhas Current system over the past ~5 My. The Agulhas Current is the strongest western boundary current in the Southern Hemisphere, transporting some 70 Sv of warm, saline surface water from the tropical Indian Ocean along the East African margin to the tip of Africa. Exchanges of heat and moisture with the atmosphere influence southern African climates, including individual weather systems such as extratropical cyclone formation in the region and rainfall patterns. Recent ocean model and paleoceanographic data further point at a potential role of the Agulhas Current in controlling the strength and mode of the Atlantic Meridional Overturning Circulation (AMOC) during the Late Pleistocene. Spillage of saline Agulhas water into the South Atlantic stimulates buoyancy anomalies that may influence basin-wide AMOC, with implications for convective activity in the North Atlantic and global climate change. The main objectives of the expedition were to establish the role of the Agulhas Current in climatic changes during the Pliocene–Pleistocene, specifically to document the dynamics of the Indian-Atlantic Ocean gateway circulation during this time, to examine the connection of the Agulhas leakage and AMOC, and to address the influence of the Agulhas Current on African terrestrial climates and coincidences with human evolution. Additionally, the expedition set out to fulfill the needs of Ancillary Project Letter number 845, consisting of high-resolution interstitial water sampling to help constrain the temperature and salinity profiles of the ocean during the Last Glacial Maximum. The expedition made major strides toward fulfilling each of these objectives. The recovered sequences allowed generation of complete spliced stratigraphic sections that range from 0 to between ~0.13 and 7 Ma. This sediment will provide decadal- to millennial-scale climatic records that will allow answering the paleoceanographic and paleoclimatic questions set out in the drilling proposal
    corecore