801 research outputs found
Gamma Ray Spectroscopy with Scintillation Light in Liquid Xenon
Scintillation light from gamma ray irradiation in liquid xenon is detected by
two Hamamatsu R9288 photomultiplier tubes (PMTs) immersed in the liquid. UV
light reflector material, PTFE, is used to optimize the light collection
efficiency. The detector gives a high light yield of 6 photoelectron per keV
(pe/keV), which allows efficient detection of the 122 keV gamma-ray line from
Co-57, with a measured energy resolution of (8.8+/-0.6)% (sigma). The best
achievable energy resolution, by removing the instrumental fluctuations, from
liquid xenon scintillation light is estimated to be around 6-8% (sigma) for
gamma-ray with energy between 662 keV and 122 keV
Estimation of Distribution Function of Fast Ions Induced by NB Based on Orbit Following in Real Coordinates
Performance of a novel wafer scale CMOS active pixel sensor for bio-medical imaging
Recently CMOS Active Pixels Sensors (APSs) have become a valuable alternative to amorphous Silicon and Selenium Flat Panel Imagers (FPIs) in bio-medical imaging applications. CMOS APSs can now be scaled up to the standard 20 cm diameter wafer size by means of a reticle stitching block process. However despite wafer scale CMOS APS being monolithic, sources of non-uniformity of response and regional variations can persist representing a significant challenge for wafer scale sensor response. Non-uniformity of stitched sensors can arise from a number of factors related to the manufacturing process, including variation of amplification, variation between readout components, wafer defects and process variations across the wafer due to manufacturing processes. This paper reports on an investigation into the spatial non-uniformity and regional variations of a wafer scale stitched CMOS APS. For the first time a per-pixel analysis of the electro-optical performance of a wafer CMOS APS is presented, to address inhomogeneity issues arising from the stitching techniques used to manufacture wafer scale sensors. A complete model of the signal generation in the pixel array has been provided and proved capable of accounting for noise and gain variations across the pixel array. This novel analysis leads to readout noise and conversion gain being evaluated at pixel level, stitching block level and in regions of interest, resulting in a coefficient of variation ≤ 1.9%. The uniformity of the image quality performance has been further investigated in a typical X-ray application, i.e. mammography, showing a uniformity in terms of CNR among the highest when compared with mammography detectors commonly used in clinical practise. Finally, in order to compare the detection capability of this novel APS with the currently used technology (i.e. FPIs), theoretical evaluation of the Detection Quantum Efficiency (DQE) at zero-frequency has been performed, resulting in a higher DQE for this detector compared to FPIs. Optical characterization, X-ray contrast measurements and theoretical DQE evaluation suggest that a trade off can be found between the need of a large imaging area and the requirement of a uniform imaging performance, making the DynAMITe large area CMOS APS suitable for a range of bio-medical applications
A low-noise CMOS front-end for TOF-PET
An analogue CMOS front-end for triggering and amplification of signals produced by a silicon photomultiplier (SiPM) coupled to a LYSO scintillator is proposed. The solution is intended for time-of-flight measurement in compact Positron Emission Tomography (TOF-PET) medical imaging equipments where excellent timing resolution is required (approximate to 100 ps). A CMOS 0.13 mu m technology was used to implement such front end, and the design includes preamplification, shaping, baseline holder and biasing circuitry, for a total silicon area of 500x90 mu m. Waveform sampling and time-over-threshold (ToT) techniques are under study and the front-end provides fast and shaped outputs for time and energy measurements. Post layout simulation results show that, for the trigger of a single photoelectron, the time jitter due to the pre-amplifier noise can be as low as 15 ps (FWHM), for a photodetector with a total capacitance of 70 pF. The very low input impedance of the pre-amplifier (approximate to 5 Omega) allows 1.8 ns of peaking time, at the cost of 10 mW of power consumption
A low-noise CMOS front-end for TOF-PET
An analogue CMOS front-end for triggering and amplification of signals produced by a silicon photomultiplier (SiPM) coupled to a LYSO scintillator is proposed. The solution is intended for time-of-flight measurement in compact Positron Emission Tomography (TOF-PET) medical imaging equipments where excellent timing resolution is required (approximate to 100 ps). A CMOS 0.13 mu m technology was used to implement such front end, and the design includes preamplification, shaping, baseline holder and biasing circuitry, for a total silicon area of 500x90 mu m. Waveform sampling and time-over-threshold (ToT) techniques are under study and the front-end provides fast and shaped outputs for time and energy measurements. Post layout simulation results show that, for the trigger of a single photoelectron, the time jitter due to the pre-amplifier noise can be as low as 15 ps (FWHM), for a photodetector with a total capacitance of 70 pF. The very low input impedance of the pre-amplifier (approximate to 5 Omega) allows 1.8 ns of peaking time, at the cost of 10 mW of power consumption
- …
