15,105 research outputs found

    Local light-ray rotation

    Full text link
    We present a sheet structure that rotates the local ray direction through an arbitrary angle around the sheet normal. The sheet structure consists of two parallel Dove-prism sheets, each of which flips one component of the local direction of transmitted light rays. Together, the two sheets rotate transmitted light rays around the sheet normal. We show that the direction under which a point light source is seen is given by a Mobius transform. We illustrate some of the properties with movies calculated by ray-tracing software.Comment: 9 pages, 6 figure

    Experimental demonstration of a light-ray-direction-flipping METATOY based on confocal lenticular arrays

    Full text link
    We show, theoretically and experimentally, that a sheet formed by two confocal lenticular arrays can flip one component of the local light-ray direction. Ray-optically, such a sheet is equivalent to a Dove-prism sheet, an example of a METATOY (metamaterial for light rays), a structure that changes the direction of transmitted light rays in a way that cannot be performed perfectly wave-optically.Comment: 5 pages, 6 figure

    Evaluation of the Primary Care Mental Health Specialist role: Final Report

    Get PDF
    This report details an evaluation to assess the impact of the new primary care mental health specialist (PCMHS) role in Kent and Medway. The evaluation was undertaken by the Centre for Health Services Studies (CHSS) at the University of Kent and was conducted June 2013 to December 2014. The evaluation was commissioned by NHS Kent and Medway and supported by Kent and Medway Commissioning Support. The evaluation encompasses six CCG areas across Kent and Medway, with 13 PCMHS employed in these areas (see Table 1-1 for breakdown). The number of posts per CCG is dependent on the amount CCGs invest (roughly equating to population size), rather than prevalence of illness. The PCMHS have been seconded from Kent and Medway NHS and Social Care Partnership Trust (KMPT) for the duration of the pilot, and are either community psychiatric nurses (CPN) or occupational therapists (OT) by profession. The majority of PCMHS are hosted by a voluntary organisation (mcch); three are hosted by GP practices and two by a community Interest Company, Invicta CIC. The main objectives of the evaluation are: 1. To assess the impact on patients by capturing their experience of the service; 2. To assess the impact by capturing experiences of those delivering the service (i.e., PCMHS); 3. To assess the impact by capturing experiences of other professions who work alongside the service (i.e., mental health professionals in secondary care, GPs); 4. To assess the economic cost of the new service via a unit cost analysis

    An algorithm for the direct reconstruction of the dark matter correlation function from weak lensing and galaxy clustering

    Full text link
    The clustering of matter on cosmological scales is an essential probe for studying the physical origin and composition of our Universe. To date, most of the direct studies have focused on shear-shear weak lensing correlations, but it is also possible to extract the dark matter clustering by combining galaxy-clustering and galaxy-galaxy-lensing measurements. In this study we develop a method that can constrain the dark matter correlation function from galaxy clustering and galaxy-galaxy-lensing measurements, by focusing on the correlation coefficient between the galaxy and matter overdensity fields. To generate a mock galaxy catalogue for testing purposes, we use the Halo Occupation Distribution approach applied to a large ensemble of N-body simulations to model pre-existing SDSS Luminous Red Galaxy sample observations. Using this mock catalogue, we show that a direct comparison between the excess surface mass density measured by lensing and its corresponding galaxy clustering quantity is not optimal. We develop a new statistic that suppresses the small-scale contributions to these observations and show that this new statistic leads to a cross-correlation coefficient that is within a few percent of unity down to 5 Mpc/h. Furthermore, the residual incoherence between the galaxy and matter fields can be explained using a theoretical model for scale-dependent bias, giving us a final estimator that is unbiased to within 1%. We also perform a comprehensive study of other physical effects that can affect the analysis, such as redshift space distortions and differences in radial windows between galaxy clustering and weak lensing observations. We apply the method to a range of cosmological models and show the viability of our new statistic to distinguish between cosmological models.Comment: 23 pages, 14 figures, accepted by PRD; minor changes to V1, 1 new figure, more detailed discussion of the covariance of the new ADSD statisti

    Adaptive Optics Imaging of QSOs with Double-Peaked Narrow Lines: Are they Dual AGNs?

    Full text link
    Active galaxies hosting two accreting and merging super-massive black holes (SMBHs) -- dual Active Galactic Nuclei (AGN) -- are predicted by many current and popular models of black hole-galaxy co-evolution. We present here the results of a program that has identified a set of probable dual AGN candidates based on near Infra-red (NIR) Laser Guide-Star Adaptive Optics (LGS AO) imaging with the Keck II telescope. These candidates are selected from a complete sample of radio-quiet Quasi-stellar Objects (QSOs) drawn from the Sloan Digital Sky Survey (SDSS), which show double-peaked narrow AGN emission lines. Of the twelve AGNs imaged, we find six with double galaxy structure, of which four are in galaxy mergers. We measure the ionization of the two velocity components in the narrow AGN lines to test the hypothesis that both velocity components come from an active nucleus. The combination of a well-defined parent sample and high-quality imaging allows us to place constraints on the fraction of SDSS QSOs that host dual accreting black holes separated on kiloparsec (kpc) scales: ~0.3%-0.65%. We derive from this fraction the time spent in a QSO phase during a typical merger and find a value that is much lower than estimates that arise from QSO space densities and galaxy merger statistics. We discuss possible reasons for this difference. Finally, we compare the SMBH mass distributions of single and dual AGN and find little difference between the two within the limited statistics of our program, hinting that most SMBH growth happens in the later stages of a merger process.Comment: 9 pages, 4 figures, 1 table; accepted to the Astrophysical Journa

    Covariance of cross-correlations: towards efficient measures for large-scale structure

    Full text link
    We study the covariance of the cross-power spectrum of different tracers for the large-scale structure. We develop the counts-in-cells framework for the multi-tracer approach, and use this to derive expressions for the full non-Gaussian covariance matrix. We show, that for the usual auto-power statistic, besides the off-diagonal covariance generated through gravitational mode-coupling, the discreteness of the tracers and their associated sampling distribution can generate strong off-diagonal covariance, and that this becomes the dominant source of covariance as k>>k_f=2 pi/L. On comparison with the derived expressions for the cross-power covariance, we show that the off-diagonal terms can be suppressed, if one cross-correlates a high tracer-density sample with a low one. Taking the effective estimator efficiency to be proportional to the signal-to-noise ratio (SN), we show that, to probe clustering as a function of physical properties of the sample, i.e. cluster mass or galaxy luminosity, then the cross-power approach can out perform the auto-power one by factors of a few. We confront the theory with measurements of the mass-mass, halo-mass, and halo-halo power spectra from a large ensemble of N-body simulations. We show that there is a significant SN advantage to be gained from using the cross-power approach when studying the bias of rare haloes. The analysis is repeated in configuration space and again SN improvement is found. We estimate the covariance matrix for these samples, and find strong off-diagonal contributions. The covariance depends on halo mass, with higher mass samples having stronger covariance. In agreement with theory, we show that the covariance is suppressed for the cross-power. This work points the way towards improved estimators for clustering studies.Comment: Several significant improvements to the earlier version: for instance it is shown more clearly how shot noise corrections may generate off-diagonal covariance in the power spectrum. Original version submitted to MNRAS on 18th September 2008. This version 18 pages, 7 figure
    corecore