97 research outputs found

    Absolute luminosity measurements with the LHCb detector at the LHC

    Get PDF
    Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. Using data taken in 2010, LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In addition to the classic "van der Meer scan" method a novel technique has been developed which makes use of direct imaging of the individual beams using beam-gas and beam-beam interactions. This beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. The results of the two methods have comparable precision and are in good agreement. Combining the two methods, an overall precision of 3.5% in the absolute luminosity determination is reached. The techniques used to transport the absolute luminosity calibration to the full 2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6, 9 and 10 and corresponding explanation in the tex

    Absolute luminosity measurements with the LHCb detector at the LHC

    Get PDF
    Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. Using data taken in 2010, LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In addition to the classic "van der Meer scan" method a novel technique has been developed which makes use of direct imaging of the individual beams using beam-gas and beam-beam interactions. This beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. The results of the two methods have comparable precision and are in good agreement. Combining the two methods, an overall precision of 3.5% in the absolute luminosity determination is reached. The techniques used to transport the absolute luminosity calibration to the full 2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6, 9 and 10 and corresponding explanation in the tex

    Absolute luminosity measurements with the LHCb detector at the LHC

    Get PDF
    Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. Using data taken in 2010, LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In addition to the classic "van der Meer scan" method a novel technique has been developed which makes use of direct imaging of the individual beams using beam-gas and beam-beam interactions. This beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. The results of the two methods have comparable precision and are in good agreement. Combining the two methods, an overall precision of 3.5% in the absolute luminosity determination is reached. The techniques used to transport the absolute luminosity calibration to the full 2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6, 9 and 10 and corresponding explanation in the tex

    Crop loading studies on ‘Caricia’ and ‘Eva’ apples grown in a mild winter area

    Get PDF
    The crop load level of an apple (Malus × domestica Borkh.) tree impacts fruit yield and quality parameters, tree vigor and biennial bearing. The optimal crop load is that which allows for consistent annual cropping and fruit quality acceptable to the market. We evaluated the effect of crop load on yield and fruit quality of two low-chill apples cv. ‘Caricia’ and ‘Eva’, growing in a mild winter area. During 2010 and 2011 crop load was manually adjusted from 2 or 3 to 17 fruits cm−2 of trunk cross-sectional area (TCSA). Fruit yield was positively related to crop load in both cultivars but mean fruit weight diminished as the crop load increased. For both cultivars, the production of non-commercial and small-sized fruit increased, whereas production of middle-sized fruit diminished as the fruit load increased. Shoot length was not affected by crop load in ‘Eva’ whereas it was reduced in ‘Caricia’. Red skin color (RSC %) had a quadratic response to crop load in ‘Caricia’. On the other hand, the RSC % of ‘Eva’ fruit was adjusted to a negative logarithmic model as an effect of crop load increment. No biennial bearing was observed in either cultivar. This research study suggests that the maximum limit of crop load for both cultivars is 7 fruits cm−2 of TCSA, and the lower limit of crop load was 3 fruits cm−2 of TCSA for ‘Eva’ and 5 fruits cm−2 of TCSA for ‘Caricia’

    Persistence of collective behavior at high spin in the N=88 nucleus Tb 153

    Get PDF
    Excited states in the N=88 nucleus Tb153 were observed up to spin ∼40 in an experiment utilizing the Gammasphere array. The Tb153 states were populated in a weak α4n evaporation channel of the Cl37 + Sn124 reaction. Two previously known sequences were extended to higher spins, and a new decoupled structure was identified. The πh11/2 band was observed in the spin region where other N=88 isotopes exhibit effects of prolate to oblate shape changes leading to band termination along the yrast line, whereas Tb153 displays a persistent collective behavior. However, minor perturbations of the very highest state in both signatures of this h11/2 band are observed, which perhaps signal the start of the transition towards band termination

    High-spin terminating states in the N=88 Ho 155 and Er 156 isotones

    Get PDF
    The Sn124(Cl37,6nγ) fusion-evaporation reaction at a bombarding energy of 180 MeV has been used to significantly extend the excitation level scheme of 67155Ho88. The collective rotational behavior of this nucleus breaks down above spin I∼30 and a fully aligned noncollective (band terminating) state has been identified at Iπ=79/2-. Comparison with cranked Nilsson-Strutinsky calculations also provides evidence for core-excited noncollective states at Iπ=87/2- and (89/2+) involving particle-hole excitations across the Z=64 shell gap. A similar core-excited state in 68156Er88 at Iπ=(46+) is also presented

    High-spin terminating states in the N=88 Ho 155 and Er 156 isotones

    Get PDF
    The Sn124(Cl37,6nγ) fusion-evaporation reaction at a bombarding energy of 180 MeV has been used to significantly extend the excitation level scheme of 67155Ho88. The collective rotational behavior of this nucleus breaks down above spin I∼30 and a fully aligned noncollective (band terminating) state has been identified at Iπ=79/2-. Comparison with cranked Nilsson-Strutinsky calculations also provides evidence for core-excited noncollective states at Iπ=87/2- and (89/2+) involving particle-hole excitations across the Z=64 shell gap. A similar core-excited state in 68156Er88 at Iπ=(46+) is also presented

    Persistence of collective behavior at high spin in the N=88 nucleus Tb 153

    Get PDF
    Excited states in the N=88 nucleus Tb153 were observed up to spin ∼40 in an experiment utilizing the Gammasphere array. The Tb153 states were populated in a weak α4n evaporation channel of the Cl37 + Sn124 reaction. Two previously known sequences were extended to higher spins, and a new decoupled structure was identified. The πh11/2 band was observed in the spin region where other N=88 isotopes exhibit effects of prolate to oblate shape changes leading to band termination along the yrast line, whereas Tb153 displays a persistent collective behavior. However, minor perturbations of the very highest state in both signatures of this h11/2 band are observed, which perhaps signal the start of the transition towards band termination

    Collective structures up to spin ∼ 65h in the N 90 isotones 158Er and 157Ho

    Get PDF
    A new collective band with high dynamic moment of inertia in 158Er at spins beyond band termination has been found in addition to the two previously reported ones. The measured transition quadrupole moments (Qt) of these three bands are very similar. These three bands have been suggested to possess a triaxial strongly deformed shape, based on comparisons with calculations using the cranked Nilsson-Strutinsky model and with tilted axis cranking calculations using the Skyrme-Hartree-Fock model. In addition, three collective bands with similar high dynamic moments of inertia, tentatively assigned to 157Ho, have been observed. Thus, it is suggested that all these structures share a common underlying character and that they are most likely associated with triaxial strongly deformed minima which are predicted to be close to the yrast line at spin 50 - 70h

    Response of seeds and pollen of Onobrychis viciifolia and Onobrychis oxyodonta var. armena to NaCl stress

    Get PDF
    Sainfoin (Onobrychis viciifolia Scop.) is an important forage legume crop with 52 species adapted to dry and poor soils in Turkey, but little is known about the effects of salinity on germination and seedling growth in arid and semiarid regions suffering from salinity problem. The seeds and pollen of two species of sainfoin O. viciifolia and O. oxyodonta var. armena (Syn: O. armena) were exposed to 0, 5, 10, 20 and 30 dS m-1 of NaCl under in vivo and in vitro conditions and evaluated for germination under salt stress by comparing germination percentage, mean germination time, root and shoot length, fresh and dry seedling weight and dry matter. Increased salinity levels generally resulted in decrease in all traits except time to germination, dry seedling weight and dry matter, which increased at high salinity levels. O. viciifolia seeds germinated and grew more rapidly compared to O. armena seeds under NaCl stress. No decrease in germination and seedling growth up to 10 dS m-1 was recorded. On the other hand, there was a clear difference for germination and seedling growth between in vivo and in vitro conditions. Lower values were obtained from in vitro experiments; suggesting that mineral salts, sucrose and agar may have resulted in higher osmotic potential inhibiting germination and seedling growth of species compared in vivo conditions. Decrease in pollen germination with increasing salinities was very sharp, indicating that pollen germination had higher sensitive to salinity. But, pollen grains of O. armena germinated rapidly compared to O. viciifolia. The results emphasize that in vivo experiments could be used for screening of NaCl tolerance in sainfoin cultivars without expensive chemicals and sophisticated equipments, but pollen germination is more appropriate for its wild relatives
    corecore