2,480 research outputs found

    Effect of 50 Hz Electromagnetic Fields on the Induction of Heat-Shock Protein Gene Expression in Human Leukocytes

    Get PDF
    Although evidence is controversial, exposure to environmental power-frequency magnetic fields is of public concern. Cells respond to some abnormal physiological conditions by producing cytoprotective heat-shock (or stress) proteins. In this study, we determined whether exposure to power-frequency magnetic fields in the range 0–100 μT rms either alone or concomitant with mild heating induced heat-shock protein gene expression in human leukocytes, and we compared this response to that induced by heat alone. Samples of human peripheral blood were simultaneously exposed to a range of magnetic-field amplitudes using a regimen that was designed to allow field effects to be distinguished from possible artifacts due to the position of the samples in the exposure system. Power-frequency magnetic-field exposure for 4 h at 37°C had no detectable effect on expression of the genes encoding HSP27, HSP70A or HSP70B, as determined using reverse transcriptase-PCR, whereas 2 h at 42°C elicited 10-, 5- and 12-fold increases, respectively, in the expression of these genes. Gene expression in cells exposed to power-frequency magnetic fields at 40°C was not increased compared to cells incubated at 40°C without field exposure. These findings and the extant literature suggest that power-frequency electromagnetic fields are not a universal stressor, in contrast to physical agents such as heat

    The heritability of testosterone: A study of Dutch adolescent twins and their parents

    Get PDF
    Since humans are diverse social beings, exposed to a variety of differing experiences, it may not be surprising that sex steroid hormones do not have

    Rotational and Vibrational Dynamics of Interstitial Molecular Hydrogen

    Get PDF
    The calculation of the hindered roton-phonon energy levels of a hydrogen molecule in a confining potential with different symmetries is systematized for the case when the rotational angular momentum JJ is a good quantum number. One goal of this program is to interpret the energy-resolved neutron time of flight spectrum previously obtained for H2_{2}C60_{60}. This spectrum gives direct information on the energy level spectrum of H2_2 molecules confined to the octahedral interstitial sites of solid C60_{60}. We treat this problem of coupled translational and orientational degrees of freedom a) by construction of an effective Hamiltonian to describe the splitting of the manifold of states characterized by a given value of JJ and having a fixed total number of phonon excitations, b) by numerical solutions of the coupled translation-rotation problem on a discrete mesh of points in position space, and c) by a group theoretical symmetry analysis. Results obtained from these three different approaches are mutually consistent. The results of our calculations explain several hitherto uninterpreted aspects of the experimental observations, but show that a truly satisfactory orientational potential for the interaction of an H2_2 molecule with a surrounding array of C atoms has not yet been developed.Comment: 53 pages, 9 figures, to appear in Phys. Rev B (in press). Phys. Rev. B (in press

    Supernovae and Positron Annihilation

    Get PDF
    Radioactive nuclei, especially those created in SN explosion, have long been suggested to be important contributors of galactic positrons. In this paper we describe the findings of three independent OSSE/SMM/TGRS studies of positron annihilation radiation, demonstrating that the three studies are largely in agreement as to the distribution of galactic annihilation radiation. We then assess the predicted yields and distributions of SN-synthesized radionuclei, determining that they are marginally compatible with the findings of the annihilation radiation studies.Comment: 7 pages, accepted for publication in New Astronomy Reviews (Astronomy with Radioactivites III

    Advanced Compton Telescope Designs and SN Science

    Get PDF
    The Advanced Compton Telescope (ACT) has been suggested to be the optimal next-generation instrument to study nuclear gamma-ray lines. In this work, we investigate the potential of three hypothetical designs of the ACT to perform SN science. We provide estimates of 1) the SN detection rate, 2) the SN Ia discrimination rate, and 3) which gamma-ray lines would be detected from specific supernova remnants. We find that the prompt emission from a SN Ia is such that it is unlikely that one would be within the range that an INTERMEDIATE ACT would be able to distinguish between explosion scenarios, although such an instrument would detect a handful of SNRs. We further find that the SUPERIOR ACT design would be a truly breakthrough instrument for SN science. By supplying these estimates, we intend to assist the gamma-ray astrophysics community in deciding the course of the next decade of gamma-ray SN science.Comment: 10 pages, accepted for publication in New astronomy Reviews (Astronomy with Radioactivities III

    Outer Regions of the Milky Way

    Full text link
    With the start of the Gaia era, the time has come to address the major challenge of deriving the star formation history and evolution of the disk of our MilkyWay. Here we review our present knowledge of the outer regions of the Milky Way disk population. Its stellar content, its structure and its dynamical and chemical evolution are summarized, focussing on our lack of understanding both from an observational and a theoretical viewpoint. We describe the unprecedented data that Gaia and the upcoming ground-based spectroscopic surveys will provide in the next decade. More in detail, we quantify the expect accuracy in position, velocity and astrophysical parameters of some of the key tracers of the stellar populations in the outer Galactic disk. Some insights on the future capability of these surveys to answer crucial and fundamental issues are discussed, such as the mechanisms driving the spiral arms and the warp formation. Our Galaxy, theMilkyWay, is our cosmological laboratory for understanding the process of formation and evolution of disk galaxies. What we learn in the next decades will be naturally transferred to the extragalactic domain.Comment: 22 pages, 10 figures, Invited review, Book chapter in "Outskirts of Galaxies", Eds. J. H. Knapen, J. C. Lee and A. Gil de Paz, Astrophysics and Space Science Library, Springer, in pres

    Brane Decay of a (4+n)-Dimensional Rotating Black Hole. III: spin-1/2 particles

    Get PDF
    In this work, we have continued the study of the Hawking radiation on the brane from a higher-dimensional rotating black hole by investigating the emission of fermionic modes. A comprehensive analysis is performed that leads to the particle, power and angular momentum emission rates, and sheds light on their dependence on fundamental parameters of the theory, such as the spacetime dimension and angular momentum of the black hole. In addition, the angular distribution of the emitted modes, in terms of the number of particles and energy, is thoroughly studied. Our results are valid for arbitrary values of the energy of the emitted particles, dimension of spacetime and angular momentum of the black hole, and complement previous results on the emission of brane-localised scalars and gauge bosons.Comment: Latex file, JHEP style, 34 pages, 16 figures Energy range in plots increased, minor changes, version published in JHE

    Anomalous tag diffusion in the asymmetric exclusion model with particles of arbitrary sizes

    Full text link
    Anomalous behavior of correlation functions of tagged particles are studied in generalizations of the one dimensional asymmetric exclusion problem. In these generalized models the range of the hard-core interactions are changed and the restriction of relative ordering of the particles is partially brocken. The models probing these effects are those of biased diffusion of particles having size S=0,1,2,..., or an effective negative "size" S=-1,-2,..., in units of lattice space. Our numerical simulations show that irrespective of the range of the hard-core potential, as long some relative ordering of particles are kept, we find suitable sliding-tag correlation functions whose fluctuations growth with time anomalously slow (t1/3t^{{1/3}}), when compared with the normal diffusive behavior (t1/2t^{{1/2}}). These results indicate that the critical behavior of these stochastic models are in the Kardar-Parisi-Zhang (KPZ) universality class. Moreover a previous Bethe-ansatz calculation of the dynamical critical exponent zz, for size S0S \geq 0 particles is extended to the case S<0S<0 and the KPZ result z=3/2z=3/2 is predicted for all values of SZS \in {Z}.Comment: 4 pages, 3 figure

    The Anderson-Mott Transition as a Random-Field Problem

    Full text link
    The Anderson-Mott transition of disordered interacting electrons is shown to share many physical and technical features with classical random-field systems. A renormalization group study of an order parameter field theory for the Anderson-Mott transition shows that random-field terms appear at one-loop order. They lead to an upper critical dimension dc+=6d_{c}^{+}=6 for this model. For d>6d>6 the critical behavior is mean-field like. For d<6d<6 an ϵ\epsilon-expansion yields exponents that coincide with those for the random-field Ising model. Implications of these results are discussed.Comment: 8pp, REVTeX, db/94/

    Magnetotransport Mechanisms in Strongly Underdoped YBa_2Cu_3O_x Single Crystals

    Full text link
    We report magnetoresistivity measurements on strongly underdoped YBa_2Cu_3O_x (x=6.25, 6.36) single crystals in applied magnetic fields H || c-axis. We identify two different contributions to both in-plane and out-of-plane magnetoresistivities. The first contribution has the same sign as the temperature coefficient of the resistivity \partial ln(\rho_i)/\partial T (i={c,ab}). This contribution reflects the incoherent nature of the out-of-plane transport. The second contribution is positive, quadratic in field, with an onset temperature that correlates to the antiferromagnetic ordering.Comment: 4 pages, 3 figure
    corecore