39,350 research outputs found

    Millimeter-Wave Atmospheric Sounder (MAS)

    Get PDF
    MAS is a remote sensing instrument for passive sounding (limb sounding) of the earth's atmosphere from the Space Shuttle. The main objective of the MAS is to study the composition and dynamic structure of the stratosphere, mesosphere, and lower thermosphere in the height range 20 to 100 km, the region known as the middle atmosphere. The MAS will be flown on the Atmospheric Laboratory for Applications and Science (ATLAS 1) NASA mission scheduled for late 1990. The Millimeter-Wave Atmospheric Sounder will provide, for the first time, information obtained simultaneously on the temperature and on ozone concentrations in the 20 to 90 km altitude region. The information will cover a large area of the globe, will have high accuracy and high vertical resolution, and will cover both day and night times. Additionally, data on the two important molecules, H2O and ClO, will also be provided

    F-8C adaptive flight control extensions

    Get PDF
    An adaptive concept which combines gain-scheduled control laws with explicit maximum likelihood estimation (MLE) identification to provide the scheduling values is described. The MLE algorithm was improved by incorporating attitude data, estimating gust statistics for setting filter gains, and improving parameter tracking during changing flight conditions. A lateral MLE algorithm was designed to improve true air speed and angle of attack estimates during lateral maneuvers. Relationships between the pitch axis sensors inherent in the MLE design were examined and used for sensor failure detection. Design details and simulation performance are presented for each of the three areas investigated

    Ground-state clusters of two-, three- and four-dimensional +-J Ising spin glasses

    Full text link
    A huge number of independent true ground-state configurations is calculated for two-, three- and four-dimensional +- J spin-glass models. Using the genetic cluster-exact approximation method, system sizes up to N=20^2,8^3,6^4 spins are treated. A ``ballistic-search'' algorithm is applied which allows even for large system sizes to identify clusters of ground states which are connected by chains of zero-energy flips of spins. The number of clusters n_C diverges with N going to infinity. For all dimensions considered here, an exponential increase of n_C appears to be more likely than a growth with a power of N. The number of different ground states is found to grow clearly exponentially with N. A zero-temperature entropy per spin of s_0=0.078(5)k_B (2d), s_0=0.051(3)k_B (3d) respectively s_0=0.027(5)k_B (4d) is obtained.Comment: large extensions, now 12 pages, 9 figures, 27 reference

    Digital adaptive controllers for VTOL vehicles. Volume 2: Software documentation

    Get PDF
    The VTOL approach and landing test (VALT) adaptive software is documented. Two self-adaptive algorithms, one based on an implicit model reference design and the other on an explicit parameter estimation technique were evaluated. The organization of the software, user options, and a nominal set of input data are presented along with a flow chart and program listing of each algorithm

    Digital adaptive controllers for VTOL vehicles. Volume 1: Concept evaluation

    Get PDF
    A digital self-adaptive flight control system was developed for flight test in the VTOL approach and landing technology (VALT) research aircraft (a modified CH-47 helicopter). The control laws accept commands from an automatic on-board guidance system. The primary objective of the control laws is to provide good command-following with a minimum cross-axis response. Three attitudes and vertical velocity are separately commanded. Adaptation of the control laws is based on information from rate and attitude gyros and a vertical velocity measurement. The final design resulted from a comparison of two different adaptive concepts--one based on explicit parameter estimates from a real-time maximum-likelihood estimation algorithm, the other based on an implicit model reference adaptive system. The two designs were compared on the basis of performance and complexity

    On the Incommensurate Phase in Modulated Heisenberg Chains

    Full text link
    Using the density matrix renormalization group method (DMRG) we calculate the magnetization of frustrated S=1/2 Heisenberg chains for various modulation patterns of the nearest neighbour coupling: commensurate, incommensurate with sinusoidal modulation and incommensurate with solitonic modulation. We focus on the order of the phase transition from the commensurate dimerized phase (D) to the incommensurate phase (I). It is shown that the order of the phase transition depends sensitively on the model. For the solitonic model in particular, a kk-dependent elastic energy modifies the order of the transition. Furthermore, we calculate gaps in the incommensurate phase in adiabatic approximation.Comment: 8 pages, 9 figure

    Probing tails of energy distributions using importance-sampling in the disorder with a guiding function

    Full text link
    We propose a simple and general procedure based on a recently introduced approach that uses an importance-sampling Monte Carlo algorithm in the disorder to probe to high precision the tails of ground-state energy distributions of disordered systems. Our approach requires an estimate of the ground-state energy distribution as a guiding function which can be obtained from simple-sampling simulations. In order to illustrate the algorithm, we compute the ground-state energy distribution of the Sherrington-Kirkpatrick mean-field Ising spin glass to eighteen orders of magnitude. We find that the ground-state energy distribution in the thermodynamic limit is well fitted by a modified Gumbel distribution as previously predicted, but with a value of the slope parameter m which is clearly larger than 6 and of the order 11.Comment: 7 pages, 5 figures, 3 table

    Government and Social Media: A Case Study of 31 Informational World Cities

    Full text link
    Social media platforms are increasingly being used by governments to foster user interaction. Particularly in cities with enhanced ICT infrastructures (i.e., Informational World Cities) and high internet penetration rates, social media platforms are valuable tools for reaching high numbers of citizens. This empirical investigation of 31 Informational World Cities will provide an overview of social media services used for governmental purposes, of their popularity among governments, and of their usage intensity in broadcasting information online.Comment: In Proceedings of the 47th Hawaii International Conference on System Sciences (pp. 1715-1724). IEEE Computer Society, 201
    corecore